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1.1 Introduction

All the lessons in this unit deal with the solutions of second order differential equations with
variable coefficients. The power series method yields solutions of differential equations in the form
of power series. The solutions 'y' of a given differential equation is assumed in the form of a power
series with undetermined coefficients and the coefficients are determined successively by inserting
that series and the series ofr the derivatives of 'y' into the given equation.

The practical use of this method has in computing values of the solutions and deriving
general properties of the solution and deriving general properties of the solution.

1.2 Basics of Power Series Solutions :

When the function f (x) is expressed in the power series

then the series converges for all x inthe interior of the interval, that is, for all x for which |x—a| >R

and diverges when |x—a|<R and diverges when |x—a|>R. The interval may also be infinite in
which case the series is said to converge for all x.

The quantity R is called the radius of convergence of (1); it is the distance of each end point
of the convergence interval from the centre « . If the series converges for all X, thenwe setR = « .

A function f (x) is said to be analytic at a point X=« if it can be represented by a power

series in powers of (x—a) as in (1) with radius of convergence R > 0.
In this connection, an important theorem (without proof) is to be noted.
"If the function f, g and r in the differntial equation
Y+ f(X)Y+9(X)y=r(x) ---------- (2)
are analytic at X=« , then every solution y( x) of (2) is analytic at X=a and can thus be represenented
by a power series in powers of (x—a) with radius of convergence R > 0"

In applying this theorem, it is important to write the linear differential equation in the form (2)
with 1 as the coefficient of y”.

A point X=« is said to be a singularity of (2) if one or more of the functions, f, g, and r are not
analytic at X=a .
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If x=a is a singularity of (2) and the product functions (x-a) f(x) and (x-a) g(x) both

are analytic at X=a, then X=a is called as reqgular singularity. If both or any one of the product
functions are not analytic at X=« , then that is said to be an irregular singularity.

If r(x) is zeroin (2), (i.e.) in the differential equation

Y+ T(X)y+g(x)y =0 ---omeoes ©)

if X=a is an irregular similarity, then it is too difficult to find the series solution of (3). However,
if it has aregular singularity at X=a , then the series solution of (3) can be found in the neighbourhood
of « . In this case, Frobenius introduced a series solution

y:(x—a)k[ao+a1(x—a)+a2(x—a)2+ ....... }aoiO --------- (4)

Which is known as a Frobenius series. When k = 0, (4) reduces to the usual Taylor series
which will be a special case of Frobenies series.

The process of finding Frobenius series solution will be applied to all the differential equations
occuring in this and ensuing lessons.

1.3 Solution of Legendre differential equations :
The Legendre differential equation is given by
d’y . dy
(1—x2)y—2x&+n(n+l)y=0 ..... (5)

There is no singularity at x = 0 so that we can obtain the solution in the form of an ascending
or descending series developed about x = 0.

Let m assume the series solution as

2

dy =« i
and W:Eo(k_r)(k_r_l)a* XK 12

Substituting these values in (5), we have

o0

> | (1-5) (k=r)(k=r =) X2 =2x(k=r)X* P+ n(n+2) X [a, =0

r=0
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or

3 [(k—r)(k—r—1)xk’r’2+{n(n+1)—(k—r)(k—r +1)f X ]ar =0 . @)

r=0

Since equation (7) is an identity and therefore the coefficients of various powers of x can
be equated to zero.

Let us first equate the coefficient of x*, the highest power of x (by putting r = 0 in (7)) to
zero, there we get

g| n(n+1)-k(k+1) |=0, called the indicial equation. Since a,=0, thereby
(n—k)(n—-k+1)=0 or

k=n or —(N+1) ----------- (8)
Again equating the coefficient of y*-1to zero, by putting r = 1in (7), we have

[n(n+1)—(k-1)k |a,=0 ------ (9)

Since the values of k are fixed by (8), the expression in brackets in (9) cannot vanish and

thusitleadsto a =0. Let us now equate the coefficient of xk-r in (7) to zero. We get the recurrence
relation as

(k=r+2)(k-r+1)
& = n(n+1)—(k—r)(k-r+1) oz oo (10)

Case: | When k = n from (8), we have

(n=r+2)(n-r+1)
r(2n-r+1)

aT:_

Puttingr=2,3, ....... in (11), we get

(n-2)(n-3) a :(_1)2 n(n-1)(n-2)(n-3)

&= 4(2n-3) 2.4.(2n-1)(2n-3)

Y 24z (g9 (zn-a])
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All the a's having odd suffixes are zero since a vanishes.

So the series solutions when k = n is

(1) L, n(n-D(-2)(0-3) , ,

j— n —
=% X 5 (2n) 2.4(2n-1)(2n-3) = | (12)
where g, is an arbitrary constatn. If a, is choosen as
1.35.....(2n-1) _ _ o _ o
T .where nis a+ve integer then the solution is designated as P, (x) which is
called Legendre Polynomial.
So,
(%) _135...(2n-1) e n(n-1) Xn_2+n(n—1)(n—2)(n—3) o 13
[n 2(2n-1) 2.4.(2n-1)(2n-3)
Case - Il : When k=—(n+1) , the recurrence relation among the coefficients has the form

(n+r=1)(n+r)

a :W L2 J— (14)

As a, is already shown to be zero, in this case also, only even suffixes of a's will remain
and th esolutions contains a series of positive term as

y-a X7n71+(n+1)(n+2) . (n+1)(n+2)(n+3)(n+4) S| 15
2(2n+3) 2.4.(2n+3)(2n+5)
n
When the arbitrary constant a, is choosen as m where n is a +ve integer the

solution is known as

Qn(X) In |:X_n_1+w X_n_z+(n+1)(n+2)(n+3)(n+4)+ :l

T 1.35..(2n+1) 2(2n+3) 24.(2n+3)(2n+5)

The most general solution of the Legendre's equation is

y=AP,(x)+bQ, (x) ---- (17)

where A and B are arbitrary constants.
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Note : For positive integral values for n, the solutions B, (x) and Q,(x) have great utility. Then

P, (x) is called Legendre polynomial, while Q, (x) is an infinite series.
Example (1) : Evaluate the values of By(x), B(x), P,(X), B(X) and P,(x).

Solution : We know the Legendre polynominal P, (x) as given by (18) for +ve integral values of n.
Puttingn=0, 1, 2, 3, and 4, we get

|1 (Other terms vanish)

and P,(x) = %(35%‘ -30x? +3)

Note : Remember that Pn(x) is a polynomial of order n.
Example 2: Express f (x) = 5x>+6x°>—8x+4 as a linear combination of Legendre polynomials.

Solution : Since we know that the Lengendre polynomial Pn(x) is order n and since the given

function f (x) is a third order polynomial, we can write

f (X)=5x>+6x*-8x+4 = CyPy+C,R+C, P, +C; P,

2 3
=C, (1)+Cl(x)+C2{3)(2_1}03{5)( 2_3)(}

Since we know R,,R,P, and PR, as given in (18)

Now equating the coefficients of like powers of x on both sides, we have

5C
73=5 or C,=2
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3C
TZ=6 or C,=4

3C
—TS‘F C=-8.C=-5

—C—22+CO=4 +.Cy=6

So the given f (x) , can be written as

f (X)=2P,+ 4R, ~5R, +6R,

1.4 Generating function for R(x) :

1
Q: Show that P,(x) is the coefficient of pn in the expansion of (1—2xh+ hz)?.

OR

1
Show that (1—2xh+ hz)fi is the generating function of the Legendre Polynomial P, (x)

Solution : We have
(1-2xh-p? )y2 ~[1-h(2x-h)] 2

1.35.

135...(2n-1
_14 h(2x—h)+E h?(2x—h)* + ==k (2x—h) +.... +#
2 24 24.6.

h"(2x=h)" +......
2.4.6.....2n
(by Brinomial expansion)

The coefficient of pn in this expansion

135...(2n-1) .\ 135..(2n-3) _ o 135..(2n-5 -
=ﬁ"2n)(2x )_r((Zn—Z))(ZX) (n-2). + r((m_él)) (2" (n-2) o

(the terms are obtained by collecting the coefficients from the term containing

h"(2x-h)", A" (2x=h)"" etc.... in the expansion).
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_135...(2n-1) e n(n-1) Xn_2+n(n—1)(n—2)(n—3) NI )
[n 2(2n—1) 2.4.(2n—1)(2n—3) n

or  XHR(x)= (1-2xh+h?)

Corollary : To show that B, (1)=1

We know that

1
— 2|2
T h R.(x)=[1-2xh +h? | 2

1
Putx=1, ¥ h"R(1)=[1-2h+h*] 2 =(1-h)"
n=0

Equating the coefficient of h» on both sides, we get

P, (1)=1 foralln.

1.5 Recurrence relation :

(1) : Show that
NPy (x)=(2n-1)x Ry (X)-(n-1) R ()

Proof : We know that
1
(1—2xh+h2) 2= 3% h"P,(X) =ommee- (19)
n=0

Differentiating w.r.t. h, we have

3

—1(1—2xh+h2) 22,(h-x) = ¥ nh"*P,(x)
n=0
or

() 37 5= (1-2e0e1) 5,4
n=0 nzo

Equating the coefficient of -1 on both sides,
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XPoa(X) =Pz (X) = N, (x)=2x(n=1) Ry (x) +(n-2) R, (x)
(or) NP, (x) = (20-1)x B, (X) = (N=1) P, 5 (X) ---emeememen (20)
(2) : Show that Py, (x)+Py,1(X)+P_y(X) = 2xP;+ P, (x)
Proof : We know that
(1—2xh+ hz)_E = thn 1L J— (19)

Differentiating (19) w.r.t. to x, we get
1 _3
2 _ np
—E(l—th+h ) ?(~2h)= £ h"Ri(x)

or h 3 h"R,(x) =(1-2xh+ hz)ngoh“ P!(x)

Equating the coefficient of pn on both sides,
P_1(X) = P(x)-2xP;_,(X)+P_5(x)

or P, (X) = Py (X)=2XP} (X)+Py_y (X) ---------- (1)

(3) : Show that (2n+1)R,(X) = PRy,1(X)—Ps_1(X)
Proof : We know the recurrence relation

N B, (%) = (20-1)x Ry () = (n=1) R (X) ----m-- (20)

and P, (X) =P, (x)=2xP(x)+Py_1(X)

or P_i(X)=P(X)-2XP_ (X)+ P/ _,(X)  ------- (1)
Differentiating (20), we have

Ry (x) = (2n-2) Ry (%) +(2n-1) xRy (X)=(n=1) By 5y - (22)
Formation of [ (2m-1)(21)+2(22)] gives
2nR; (x)+(2n-1)R, 4 () = 2(20-1)B, 4 (x) +(20-1) B} (x)-2(n-1) R, () +(2n-D)R 5 (x)
or  (2n-1)R(x)= R(X)-R2(X)

or  (20+1) Ry (X) =Ry (X) =Ry (X) -omeeeees (23)
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(4) : Showthat nR, =xP;-P;_,

Proof : We know that

N

S o Y €y J— (19)

n=0

(1— 2xh+ hz)_

Differentiating w.r.t. to h, we get

1 -3 .
—E(l—th+h2) 2 (-2x+2h) = ¥ nh™ R, (x)
3
or  (x=h)(1-2xh+h?) 2=Enh" R, (x) e (24)

Again differentiating (19) w.r.t. to x, we have

1 = npos
—5(1—2xh+h2) 2(-2h)= 3 h"PI(x)

3
22 W R(X) e (25)

n

or h(l— 2xh+ h2)

I
o

Now on dividing (24) by (25), we obtain

x-h _¥nh"'P (x)
h — xh"P(x)

or (x—=h)Zh"P/(x)=hZnh"*PR,(X)
on equating the coefficients of nn on both sides

we get NP, (X) = XPy(X) = Bl_y(X) -momommmemeeeees (26)

(5) : Show that
(N+1) Py (X) = Proy = X B =memmemmemmeenoeae (27)

Proof : By adding the recurrence relation (21) and (26), we get the above relation
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1.6 Rodrigue's formula : Differential representation of P,(x)

5 1 d" (X2 —l)n
Show that B, (x) = 0 o
Proof : Let yz(x2 _1)n ............. (28)

%: n(x2 —1)n71 2X

or (xz—l)ji_n(x 1) 2X = 2NXY -oceeev (29)

Differentiating (29) (n+1) times by Leibnitz's theorem, we get

n+2 n+1 n dn+1 dn
(X 1)d y+n+lc1 d y(2x)+”+1C M(Z) —onl x— y n+1C y

an+2 an+1 2 dx" dxn+l dX
(i.e.,) (x2 —1) dn+2y+2(n+1)x dn+ly+n(n+1) d’y =2nX n+1y+2n(n+1)d—ny
e an+2 an+1 an an+1 an
or (x2 —1) dn+2y+2x dn+1y+2x(n+1—n) dn y—n(n+1)ﬂ =0
dxn+2 dxn+2 dxn+1 dxn
(ie.)) (xz—l)dn+2y+ dn+ly—n(nJrl)ﬂzo
’ dxn+2 dxn+1 dxn
) dn+2y dn+1y dny
or 1k - 2 (N4l T =0 e (30)
. Vi .
Putting o in (30) gives
(1-x )% - 2x % T TELS: VS J— 31)

Which shows that V is a solution of Legendre equation.

n

d
Hence B, (X)=cV =c where c is a constant. ------- (32)

Xn
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To find ¢, put x = 1 in both sides of (32)

dn
(ie.) C[ dxnyj _1=F’n(1)=1 ....... (33)

Again yz(x2 —1)n =(x-1)"(x+1)"
Differentiating both sides n times by Leibnitz's theorem, we get

o d"(x+1)"  d"H(x+1)" -
v =(x-1) dx”l) +n d>(<”1) {n(x—l) }+ ....... +(x+1)" ———

Now putting x =1 in the above equation, all the terms in RHS except the last vanish since
each term contains the factor (x - 1).

Also —d”(x—l) =[n (— =

dx"

Hence from (33) and (34), we get

1
2"(In)c=1or C_Z“_m
Now from (32), we get

n

n 2
P (x)= 1 dy_ 1 d"(x*-1)
" 2"n dx" 2"|n dx"

Note : One can find values of P,(x),P,(X), P,(X),...... etc., from Rodrigue's formula

1.7 Orthonormal Property of Legendre Polynominals :
To prove that

1
() [ Pa(X) P (X)dx =0 if nzm Orthogonal property
-1

® RO ox=

ontl ifn=m Normalization property.

Proof : (a) Legerdre's differential equation can be written as
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%{(1-%)%} n(n+1)y=0 .. (35)

Since B, (x) and P,(x) are solutions of (35), we have

d dP
&{(1—%) ;}+n(n+1)Pn=O _________ (36)
d AP,

and &{(1— X )d_F))(} + m( m+ 1) Pm =0 _______ (37)

Simplifying [ B, X(36)-P, X(37) ], we get

Pm%{(l—xz) %Z‘ }—P d {(1—x2)ddzm} + P, P, [n(n+1)-m(m+1)]=0

" dx
Integrating above within given limits, we get
L d dP. 1 d dP. L
P —(1-x*)="1 |dx — [| P,—<(1-x*)—=""¢ [dX +(n-m)(n+m+1) [P, P, dx=0
I[ mdx{( ) dx H _jl[ " dx{( ) dx H (n=m)( )_J1 nom

-1

Integration by parts gives us
[ Ru(1-5) Pn'T_l—}lP,; (1) Bk - | Ry (1-?) Pn;L + }an'(l—xz)Pr;1 dx

+(n-m)(n+m+1) } P,P,dx=0
-1

G.e.) (n-m)(n+m+1) } P Pdx=0

1
or [Pa(X) B (X)dX =0 if m&N  ocmeeeemeeee
-1

1
(b) : We know that (1-2xh+h?) 2 = = h"R.(x)

Squarring both sides, we get

(1—2xh+ hz)flz 5 h?" I (X)]2+2 > h"™" B, (X)P, (X)
n=0 n=0
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Integrating w.r.t. x between the limits - 1 to +1,

! dx _ < 2n1 2 < m+n1

we have [ 75 7 = 207 IR ()] dr2 2 077 1B ()R (x) o
1 1 0 n 1

or —%[Iog(1—2xh+h2)ll=n§0h2 Jl[Pn(x)]zdx from (38)
1 2 ot

(e.) —%[Iog(l—hz)—Iog(l+h)1=n§0h2 _jl[Pn(x)]zdx

or  plioa(teh) ~log(a-h)] = £ ™ IR ()] ox

h? h* h2" © 1 2
i 2| It —+—+ . + T =>h"[[P(x)| dx
(i.e.) [ 3 s . } EO _fl[ (%) ]
Equating the coefficient of h2n on both sides, we get

1

2 2
LTI S — (39)
Both (38) and (39) can be combinedly written as

2
= o
2n+1 ™

}1pm(x)pn(x) i

1.8 Integral representation of Legendre Polynomial :

(i) Laplace's first integral for P,(x)

1x n
Show that F’n(X)=;I[Xi\/X2 —lCOSt/’J} d¢ n being a +ve integer --
0

Proof : We know the standard integral

| dp =
oaibcos¢_\/az_bz (RS J— (41)

on putting a=1-xh and b=h,/x?>-1is (41), we get
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dg =7 (1-2xh+ hz)_g
—xh+ h\/x —1 cos¢

o-—.n

or n(l— 2xh+h? )7 % = ]T[l—h{xi\/xTA cos¢}rd¢ -------- (42)

0

<1 then

If h is small so that ‘h{Xi\/ x> -1 COS¢}

-1
[1—h{x4_r«/x2—1cos¢ﬂ =1+t+t2 4= 2 t"
where t:h{xin/x2 -1 cos¢}

~.(42) becomes

Y h"P(x)=% h“ijr{xi«/xz—l cos¢}nd¢
n=0 n=0 0

Equating the coefficient of pn on both sides

’i {X+\/ﬁ_ COS¢} """""" (40)

(i) Laplace's second integral for P,(X) :

Show that P,(x) == j d¢ (43)

o [x+\/x—1cos¢}

Proof : We know the standard integral

T
COS¢ \/a bZ if a>b ----——-———-- (41)

O'—-Fl

Putting a=hx—1, b = hyx?>-1 and a?-b?=1-2hx+h? in (41)

4 d¢ _
We get g[xi\/xz——lcosﬂ h-1
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If his large so that

{xi\/xz——lcosqb} h

>1 then both sides of (44) can be expanded in
descending powers of h

-1

. ” 2x 1 |2
(i.e.) jt—gblzg[ _FXJrF}

where tZ{Xi\[ X2 —1COS(]5} h>1

_ TSR A |
(e.) REHKE LI
T 1 1
or '([)ngotm'l d¢ =7 n§=:0 hn+1 Pﬂ( )
1~ d 1
i ¢

) T go el & hL Pn(x)
(i.e.) o [{xi\/xz_—lcosqﬁ}h} "

1
Equating the coefficients of o) on both sides, we get

1z d
R (0= N @3)
o [xi«/xz—lcosﬂ
1.9 Christoffel's Expansion :
Show that
=(2n-1)R,_,+(2n-5)P, 3 +(2n=9)P, ;5 +..... ====--------- (44)
the last term being 3R, or R, according as n is even or odd.
Proof : We have the recurrence relation
(2n+1)R, = Py,;—Py_; -------- (23)

Similarly (2n-1)P_, =P -P._,
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or Pn' = (2n—1) Pn71+ Pn',z
=(2n-1)R,,+[(2n-5)P, 5 +FL,

= (2n-1)P, ,+(2n-5)P, 5 +[(20-9)P, 5 +P; ¢ ]
~When nis even

P, =(2n-1)P_,+(2n-5)P,_;+(2n-9)P, s +.....Fy

= (2n-1)P, ,+(2n-5)P, 4 +(2n-9)P, 4 +...+3R, (::tggiloj

the last term being 3R,.

Again when n is odd,

P, =(2n-1)P,, +(2n-5)P,_;+(2n-9)P, g +....+ P}
=(2n-1)P,_;+(2n-5)P, 5 +(2n-9)P, 5 +...+(5R, + R

=(2n-1)B, ,+(2n-5)R, 5+....+R, ("P=x,R=1=R)
thus the expansion (44) is proved.
(3) : Prove that

J(R) dx=n(n+1) oo (45)

-1

Solution : We have the Christoffel expansion
P/ =(2n-1)P,_,+(2n-5)P, ;+(2n-9)P, 5 +...... (44)

the last term being 3R, or R, according as n is even or odd.

(PP ax=(2n-17 (P, it (20-8) (s

the integral of the product of different P's vanishes in view of the orthogonal property (38)

so (R dx=(2n-1)*- 2

—_— ) [ ;
-1 2(n_1)+1 ) 2(n_3)+1+ by equatlon (39)
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+(2n-5)2 -2

= (2n-1)?
(n ) 2n-1 2n-5

2

1
In this, if n is even, the last term will be | (3P1)2dx which is equal to 9-m =
-1 .

So where n is even,

}(Pn')2 dx = 2[(2n—1)+(2n—5)+ ..... 3}

-1

n
This series is in AP of 5 terms having first term (2n—1) and last term 3 so that

no of terms
m=s——

5 [ 1stterm + last term]

so  [(RY =2 2[(2n-1)+3] = n(n+1)

-1
Again when n is odd, we have

T(P) ax= 2[(2n-1)+ (2n-5)+...... 1]

-1

n+1

=2% — [(2n-1)+1] = n(n+1)

1
Thus J(R;)” dx=n(n+1) for all +ve integral values.
]

1.10 Associated Legendre Polynomials :

If the Laplace equation
62v+82v+62v
oxt oy? o
coordinates by means of the relations x=rdné cos¢, y=r Snf sn¢, z=r cosf, we obtain, after a
lengthy but straight forward reduction.

V2V =

=0 js transformed from cartesian coordinates to spherical polar
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2 2 2
r S|m9ﬂ +2r sn08—+sm06—+co Qﬂ ia—:O __________ (46)
or? or 06? 00 sind o¢*

Any solution V(r, 0, ¢) of Laplace equation (46) is known as a Spherical Harmonic.

In an attempt to solve (46), we assume a product solution V(r,0,4)=R(r)G(0, ¢).
Substituting this in (46) and rearranging the terms, we get

PR+2rR_ [(10°G, Cost 0G, 1 &G
R G062 GSno 90 GSNn%0 0¢°

This relation can hold only if the common value of these two expressions is a constant. For
the sake of convenience, we write the constant as n(n+1) . Thus we have

r’R'+2rR —n(n+1)R=0 ------- (47)

0°G  cosh oG 1 0°G
+——+ —
00% Sn@ 90  sSn*0 9¢?

+n(N+1)G=0 . (48)

Can interest lies with the solution of (48) which are known as surface harmonics.

In (48) we substitute G(0,¢) = G,(0)G,(¢).

We find, after rearrangement of term,

Gi(6) ., ., Gil6)
6,(0) """ ¥ G (0)

Taking the common constant value as 12, we have pair of equations as

sin?@

1)sin?f = —
+n(n+1)sin s

sin® G/+sin@ cosf Gl'+[n(n+l)sin20 —mz] G,=0 ------ (50)

This equation (50) is known as the associated Legendre Equation. But the usual form
can be obtained by putting x=cos6 . Thus on substitution and simplification, (50) can be written as

(1- x)ZdZ_C;l— 2xd_Gl+{n(n+1)—1r_n22}Glzo ______ (51)

dx dx

which is the algebric form of the associated Legendre differential equation.
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Further, putting G,(6) = (1— xz)ly2 y, the equation (51) is transformed to

(1—x2)y”—2(m+1)xy’+[n(n+1)—m(m+1)]y=0 -------- (52)

On differentiating (52), we have

(1— xz) y"—[ 2x+2(m+1) x|y +[ -2(m+1)+ n(n+1)-m(m+1) |y'=0
or (1—x2)y'"—2(m+ 2)xy"+[ n(n+1)—(M+1)(M+2) ]y’ =0 ---ermme (53)

d
Obviously if y satisfies (52) for m, then Y satisfies (52) for (m + 1) as can be seen by (53).

dx
d" PR, (x)
dx™

Again for m = 0, (52) becomes Legendre's equation and hence y= satisfies (52).

7, d" R (%)

dx™

-G (0) = (1-%°)
= B"(x)is the solution of (51)

S Tt

(54)

are called the associated Legendre Polynomials or associated harmonics of mth order and
nth degree.

Equation (54) gives a relationship between the associated Legendre polynomial Pn”‘(x) and the

Legendre Polynomial P, (x) This facilitates to derive recurrence relations and other relations for
the associate Legendre polynomials.

(4) : Starting with the Legendre differential equation for Pm(x) , derive the differential equation for

assocaited Legendre polynomials P} (x) .
Solution : Legendre differential equation for Pm(x) is
(1— x2) Py — 2xP; +m(m+1) P, =0 -------- (55) where mis a +ve integer.
Differentiating this equation n times with the help of Leibnitz formula, we get

(1—x2)u"—2x(n+1)u'+(m—n)(n+m+1)u S o J— (56)
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d"R,(x)

where U=
dx"

Now Let v(x) = (1—x2)% u(x)
=(1—x2)% d" P, (x)

dx"

Then we have

) , 2nxv' nv n(n+2)x
=|V'+ + +
1-x* 1-x (1_ x2)2

Substituting these values in (56), we get

2
(1— xz)v”—2xv’+{m(m+1) _1n z}’ -0
—X

Which is the Associated Legendre differnetial Equation

(5) : Express the electrostatic potential between two electric charges, at a distance d apart as a
series of Legendre polynomials.

Solution : The associated electrostatic potential between two electric charges at the distance d is

1 k
proportional to q (i.e.) V=a. Where K is an appropriate constant. Let the two charges have the

position vectors ¢ and R as shown in the Fig.1.

Fig. 1
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The distance between them is

1

d=|R—f|=[ R?~2RrCosf+r*]?
2r r) %
ZR{1_3C039+(EJ } .............. (57)
'V—k 1 2r 0+ f 27
~V=p _ECOS + R/ | (58)
X . r
For |f| = r<|R| , we may take the change of variables as R =h and cosf=x.

~.(58) becomes

V:%[l—thJrth%

~ KSR ("

Which is a series of Legendre functions known as the expansion of the generating function.

1.11 Summary :

The entire lesson consists of finding the solution in series of the Legendre differential equation
and its properties. Prior to this, some basics to arrive at the power series solution of the differential
eguation are given.

The generating functions, from which a series of Legendre polynominals can be written, is
given. With this, several recurrence relations are derived.

Then the differential representation (Rodrigue's formula), integral representation such as
Laplace first integral and Laplace second integrals have been derived.

Orthonormalization codition of the Legendre polynominals and the Christoffd expansion of
the derivative of the Legendre polynomial in a series of Legendre polynomials are derived.

The associated Legendre polynomials have been explained and its relationship with the
Legendre polynomials is obtained.
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1.12 Keyterminology :

Power series solution - analytic - singularity - Frobenius series - indicial equation - Legendre

polynomial - Generating function - Rodrigue's formula - Laplace integral - Christoffel Expansion -
Associatd Legendre polynomials

1.13 Self Assessment Questions :

1.

o

1
(b) Show that | X Pa(X) Py.o(x)dx =

(a) Show that Pn(x) is an even function of x when n is even and is an odd function of x

when n is odd.

(b) Prove that (l—xz) Pi(x)= n[PM(x)—xPn (x)]
(a) State and prove Rodrigue's formula.
(b) Express x* as a series in Legendre polynomials.

(@) Prove nP,(x)=(2n-1)xP,_;(x) - (n-1)P,_,(X)

2n
4n?-1

(a) Show that P, (-x)=(-1)".P,(x) (Hint: use generating function)

1
(b) Prove that [ X" P.(x) dx=0 for m <n (Hint : use Rodrignes formula)
-1

By differentiating the generating function for the Legendre polynomials, show that all

even order derivatives of B, (x) vanish at x = 0, if n is odd and that all odd order
derivatives vanish at x = 0 if n is even.

1.14 Reference Books :

1. B.D. Gupta - "Mathematical Physics" Vikas Publishing House, 1980
2. E. Kreyszig - "Advanced Engineering Mathematics" Wiley Eastern Pvt. Ltd., , 1971
3. P.P. Gupta, R.P.4S Yadav and G.S. Malik "Mathematical Physics" Kedarnath Ramnath,

Meerut, 1980.



Unit -1 7
Lesson - 2 .
Bessel Functions

Objective of the lesson :

To define beta and gamma functions.

To state different forms and properties of beta and gamma functions.

To find the series solution of Bessel differential equation. 7

To find the generatingfunction, integral representation, recurrence relations of J_(x).
To study the orthogonal properties and modified Bessel functions.

7§trugtgrg of the lesson :

2.1 Introduction.
2.2  Definition of beta and gamma functions.
2.3  Fundamental property of gamma functions.
2.4  The value of FE and graph of the gamma function.
2.5 Transformation of gamma function.
2.6  To show that B(m,n) = B(n,m).
2.7  Ditferent forms of beta function. .
2.8  To find the relation between beta and gamma function.
2.9  Reduction of definite integrals to gamma functions.
2.10 Bessel's Equation, functions and polynomials.
' [A] Series solution of Bessel’s Differential equation.
[B] Generating function for J_(x).
[C] Integrals for J,(x) and J (x).
[D] Recurrence formulae for J_(x).
[E] Examples.
[F] Orthogonal properties of Bessel's polynomials.
[G] Modified Bessel functions.
[H] Miscellaneous examp‘les.,

V V V V V

2.11  Summary of the lesson.
2.12 Key terminology.

2.13 Self Assesstnent questions.
2.14 Reference Books.

W TR e e,
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2.1, Introduction;

The most important of all variable coefficient differential equations is Bessel's

differential equations. This arises in a great variety of problems, including almost all

. applications involving partial differential equations, such as the wave equation or the heat
~ equation. :

As a presequete to Bessel functions and many other fbrthcoming lessons, beta and
gamma functions are to be dealt forthwith.

2.2. Definition of beta and gamma functions:
' Under the study of Definite Integrals, we come across two very important
integrals known as Eulerian Integrals which are of the type. :

m-1 n-1
'Ex (I—X) dX_ and fe—x xn—l dx ,

where the quantities m and n are supposed to be positive,
The first Eulerian integral is generally known as Beta Function and defined as

A(m,n) = J:x'“" (1-x)™" dx where m and n are positive.
The second Eulerian integral is known as Gamma Function and is defined as

T(n) = f e™ x" dx \where n is positive.

23. FUNDAMENTAL PROPERTY OF GAMMA FUNCTIONS :
|  [(n+1) = nT(n)
In order to prove this relation, let us consider the integral
fe"‘ x" dx = T(n+1).
Integrating it by parts taking e as second function, we get

7

fe"‘ x" dx . /
[—-e"‘ x“t—nf—e;“‘ /x;“_l dx

n f—e"‘ x" 1 dx,
/

o T(n+1) = nT(n) e (1)

/

‘ From (1) it is evident that if-thie value-of I'(n) is known forn between two successive
)3) )
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positive integers, then the value I'n for any positive value of n can be written as

I(n )=F—(“n—“l .......... @)

If .-1<n<0 then (2) gives I'n, since n+1 is positive. As such, the value of I'n may be

determined if -2<n<-1 since then I'(n+1) on the R.H.S. of (2) is known. Similarly I'n may be
determined when -3<n<-2 and so on so forth.

C(n+1)

Hence I'n = J:e'* x"dx = define 'n completely for all value of n except
Now replacing n by n-1 in (1) we get
= (n-1) I'(n-1)
Similarly T'(n-1) = (n-2) M'(n-2) étc._
Hence (1) yields '
Fn+l) = n(n-1)(n=-2).coe. 3.2.1 T()

But by dlefinition T' (1) = j‘:e” dx = [—e"‘]o =1

. T(m+1) = n(n-D(n=2).cco.. 3.2.1 = ['(n) R (3)
provided n is a positive integer
Putting n=0 in (3) we get
rq) = 0l=1 w0l =1
ry=! e (4)
Also if we put n=0 in {2), then we find '

r

ro = —

© (5)

By repeated application of (2), it may be shown that the gamma function becomes
infinite when x is zero or any negative mteger i.e.,

-n)=o e (6)
when n=0 or a positive integer.
But the function has finite value for negative values of n which are not integers.
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(1
24. THE VALUE OF F(EJ AND GRAPH OF THE GAMMA FUNCTION

We have by definition

I'm = fe'x x"! dxv, n>0

. Putting x = 4% ie, dx=2¢4dg, we get

r(n) - 2J‘0'¢2n—-| e_¢2 d¢

I
when n= > this yields,

r@ =2[ ¥ 4y e (1)

= ¢

Suppose I = J:e dg
Putting g=4y sothat dg=1dy

- -Aly?
Wehavel—_[:e A dy
Multiplying both sides by .-**, we find
[Le™ = J:e"xz‘““’z). Ady
Integrating both sides w.r.t. ; within the limits 0 t0 o,

1 J.:e‘xz dn = ffe"*:“*“’:’kdk dy |

4y = []-L. d
or 1™ f[ 2 ey | Y |

[l bk - 1304

I = —
1+y?

o | —
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I |
1= [e*dp=S )
From (7) and (8), we get
r(l) B ©)
2 2
Now putting n=-=in (8), we find -
1
r(-l) = 5 24n
2) =1 by (9) eooeeeee (10)
2 _
-3) /
3 2 2 Jr
Similarly r( Ej =73 ‘5("2‘/;) =47 etc. e (11)
2

The graph of 'n may be shown as below under the definition that the function
. becomes continuous function of n exceptwhen n=0 or any negative integer. "

2.8, NSFOR F GAMMA F

By definition
I'(n) = J:e"‘ x"7 dx i (12)

Putting x =iy, dx =2»X1dy in(12)we get

C(n) = J':e'}‘y A" y" ! dy
'(n) _ Sy one
o == J:e Myldy, (13)

If we put e = y in (12) then we get

F(n) = fy (log ) Ty = f;[logé)n- €/ (14)
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[ x=logl and dsz(——%J dy = -ldy]_
y .

Vy( y y

Again if we write x = y”"' in (12) we get

1 3 ~yhn (n—-1)/n (1-n)/n
— [ e o ytin gy

F'(n) =
[ v dx= 1 y(me dy]
n
1 L lin
= - J-:e Yoody.
nT(n)=C(n+1)= fe"”"dy e (15)

1
COROLLARY. If we replace n by > in (15), we find

1 (1 _,:
E F(EJ = J:C y d}',
which is the same as (7).

26. TO SHOW THAT, A(m,n) = B(n,m).
By definition

B(m,n) = J:x"‘" (1-x)""dx
Replacing x by 1-x, we get

Bamm = [(1-0™ 1-0- )™ (~dx)

_[; )™ (1-x)™" dx

= Anm).
27. DIFFERENT FORMS OF BETA FUNCTION

N 4
Substituting 1+v forx, we have
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1 _

A(m,n) = Ix"‘"' (t-x)"" dx [ dx = “% Y) 7y dy = ! ~dy and 1-Xx =——l—

e , ] (1+y)* (1+y) l+y
_ y™ l dy
0 (1+y)'“_X Ty C(+yY

m-1 o :
.......... (16)

B A
0 (1+y)m+n

- Also, since A(m,n) = A(n.m),

, n-l
A(m.n) = J-“ (_lfl;)TmT dy, e (17)

2.8. TO FIND THE RELATION BETWEEN BETA AND GAMMA FUNCTIONS

I'mIn
A(m,n) = Fmam: (18)

From equation (13), we have

i.e, m = L: )\'m e—)\xxm—l dX,

Multiplying both sides by €™ A" and integrating w.rt. A within the limits 0'to =,

we get
p >4 - -l
-4 -l _ ; ~A(l+x)  am+n-1 m-1
Fm]je A d/l—jo['[ne LA d/le dx
1 _ r(m + n) m-1
or m.I'n = J‘:———_—.(]+X)xn+n - xTTdx by equ. (13)

I(m+n) B(m,n) by definition.

I'mIn
Alm,n) = T'(m+n)’

COROLARRY. If we put m+n=1in
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m-1

I'mTIn = J:F(m+n).mdx,

m-1i

X .
we have 'mI'(l-m) = J:l+x dx [« ri=1]
T Snmm  (standardintegraly ... (19)
1
Replacing m by 5 we get
r%r%=n or r%:ﬁ_

[1] To show that

m-}

f[ y dv = .rx““'+x“"l ix = fmIn
0 (l+y)m+n n (l+x)1n+n ['(m+n)

we know that

m-1 m-l| m-1]
S 4 : 1y 4
—2 __dy = [ —dy+ [ —L gy
0 (1+y)m+n y J'0(|+y)m+n y ] (l+y)m+n )

1
Substituting < fory in the second integral on R.H.S., we get

1 m-}

- y™ N (;J (1

J:’(l-i-y)m*" dy. - JT(]+ l \Jm+n L_XTJ dx’
X

= Il X - dx
0(1+x)m+n

m-|

m-~}
y X x™!
———dy = [ g -
0 (l+y)ln+n Yy J:)(l +x)m+n X+ _[0 (l+ x)m+n dx
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[ -- change of variable variable does not
change the value of integral]

x4 I'm I'n

or pmn) = [ dx = e (20)

0 (1+x)™" I'(m+n)

[2] if we substitute a?y for x, we get

rx"‘" dx b y™ dy
0

A+x)y™" 0 (ay+b)™"
. x"'dx _ I'mIn ‘
since | ST T Tomem Y (18)and (18).

am ',,J‘w y"'d _ TmTIn
o (ay + b)™" ['(m +n)

y™dx I'mTn
0 (ay +b)™" a™ b" I'(m+n)’

or

COROLLARY. Substituting y = tan® 6, this relation transforms to

L”/Z sin®™ g cos™' @ d9 I'mI'n
(a sin® @ + b cos’ ™" 2a™b" ' (m+n)’

[3] If weput x =sin” 6, we get
I A L 2 :
I x"T1-x)""dx =2 J: sin2™ Y @ cos*"™V @ sin @ cos € d4
[§] K .

(- dx=2sin@cos db)

- ,
or I'mlfn _., J';‘ sin?™"'0 coszl“"l 0 sin 0 cos 6 d6

I'(m+n)
2 gy 20 s _ FmIn . :
.r:) sin ; etcos- 0 do = 2 1"(m+n) e TTaTR (‘21) -

COROLLARY. Replacing 2m-1 by p and 2n-1 by g, this relation-



r(p+l) (q+l)
sin®@ cos'0 do = 2

reduces to f r( p+q+ 2) ..... e (22)

Putting p=0 and g=0 in succession, we get

_r /z(cos 0) do = A2 ) k
o ,

. 2 Jz
. j" (sin @) dg = — < /_ N%
2r‘(-“-+1) and % 2r(2+1) 2 -
2 2
I'mIn m- n—
[41 Byputting x=sin%e in Fm+n) = _‘:x "(1-x)""do.
We have just proved that

72 . am-l 2n-1 _ I'mln

Jy sin*™10cos™ 6 ap = TRmrm: e (21)

Now if we put 2n=1, we have

[[Sinmggo = Y2 __Im 1 |
2 ”(“”E) ............ (23)

Again putting m=n in (1), we find

2
r sin?™1 cos®™ 9 do = ____(I‘m)
Jo . 2 T(2m)

T (m)? 1 2. o |
or 2{15?2‘:}!1 ] = S5 J: sin>™'20 de [ 2 sin 0 cos 6 = sin 20]

D N _ 1
S ], Sin ¢ do put‘29—(p, d9=—2—d¢p

2

= Za ZJ: sin®™ ' ¢ dp [ sin (it—(p) = sin (p]

(Prop. of definite integral)

2. 2m-l _ 2" (Pm)?
J: sin 6do = —W ........ sesee (24)
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From (23) and (24) it is obvious that

22 T m m
' (2m) ~ F(m~+ 1 ) 2
2
or I'm F(m+%) = E‘z/l—?_—l I'(2m),

This may also be put in the form

J;,
2.10. BESSEL’'S EQUATION, FUNCTIONS AND POLYNOMIALS
[A] Series Solution of Bessel’s Differential Equation.

2m-1 »
r2m) = 2 'm F(m +%) , evereeneeeas (25)

This equation is of the form

dy 1dy (, n?
Y 2 4i-=|y=0
Ty a [ xzj‘y - (26)

There is singularity at x=0, and this is a removable singularity and hence the given
equation may be solved by the method of series integration.

In order to integrate it in a series of‘ascending powers of x, let us assume that its
series solution is '

)

y= a,
r=0

xk+r )

dy _ Ya (kir) X
r=0 :

dx

2 o -

d—)zi = Za,(k+r)(k+r—l) x"”’?
dx - :

Substituting these values in (26), we get

o]

. 2
Z[(kﬂ) (k+r—1) x**? f—l)(—(k+r)xk+'"' +;(1——"—2) xk“] a, = 0

r=0 X

or i[{(k+r) (k+r-1) +(k+r1) - n?} x¥*2 4+ xk"]ar =0

r=0
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*.

or Z[{(k+r)2 ~n?} x*? 4 x"'“]élr =0 cerreneene (27)

r=0

The relation (27) being an identity, let us equate the coefficients of various powers
r=01in (27), we have the indicial equation '

(k*-n?)a, = 0.
Being the coefficient of first term, a(,A 20.
v k*-n?=0, ie, k=tn. (28)
Now equating to zero the coefficient of x*-! by putting r=1in (27), we get »
{k+1)? —n?}a, = 0
Butfrom (28), (k+1)? =n2=0:" - a,=0 e (29)
Equating to zero the coefficient of general term, i.e., x+ in (27), we find
(k+r+2?-n?la_+a =0

_ a, . » (30)

‘or deys - - T T
(k+r+2-n)(k+r+2+n)

Case l. When k=+n. By quting r=0,1,2,........ in (30), we get

_ aq
a,=——
2(2n+2)

- _ a, - a,
4(2n+4) 24(2n+2)(2n +4)°

% - - 4,
6 (2n +6) 2.4.6 (2n+2) (20 +4) (2n+6)

......................................

A _ \ (=1 a,
: 2.4.6...2r (2n+2) 2n+4).... (2n +2r)°

Hence the series solution is

Fe
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n+2 n+l
y=a,|x" - X + X = everens
2(2n+2) 2.4(2n+2)(2n+4)

2 4 r o 2r

= a,x" |1- X + z — e ¢l x + e
. 2(2n+2) 2.4(2n+2)(2n +4) 24.... 2r (2n+2) ....(2n+2r)
" o« (_l)r XZI‘ .

=X D T T o i e e (31)

L7 (1)1 2F (1) oo (N +T)

1 .
If 2 =7 Fn+1)’ this solution is called as J,(x) -

| _ X | PS (_l)r x2r
Thus n(%) 2° T(n +1) 2 27 (! (n+1) (n+2) oo (n+r)

r=0

r=0

_ © [ x n+2r 1
=> (-1 (5] e (32)

Casell. When k=-n.
The series solution is obtained by replacing n by -n in the value of J,(x), hence, we
get

w —ne2r
=3 (g) e (33)
The completion primitive of Bessel's equation is '

AJ,(x)+ Bl (x),
where n is nbt én integer, A, B being two arbitrary constants.

- COROLLARY. Bessel’s equation for n=0 is

2
dy 14y,

=0
dx?  x dx y

T l . . Y . . _ ~ K4t . ’ L
lts series solution by the same substitution y= Z;,a' x"" (as above) is obtained to

be
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If a,=1, this solution is denoted by | Jy(x), i.e.,

where J,(x) is called Bessel function of zeroeth order,

In fact J,(x) is that solution of Bessel's equation for n=0, which is equal to
unity for x=0. '

Note : J.(x) is called Bessel's function of the first kind of order n.

[B] Generating Function for J,(x)2

To show that ™2™ = Dot 1 (x)

n= -

Proof : We know that

2 3
e = l+X+—+—+......
3!
- Z‘: x°
r=0 I"
xt/2 _ c xrtr
¢ = o P e (35)
o P 1 x* " -
Similarly, ¢ Z sl e, (36)

Multiplying (35).and (36), we get

X/2 (t-111y __ o Xt T~ (‘l)s x*
© - Z2'r! X Z ‘

S 48
r=0 s=0 2t s!

In order to find the (" )th term, we should repla}ge r by n+s and then coefficient of t"

X XIH'S ] _(l)s S x (

s= (n+S)'

2] (n+s)' P ho e, (37)

=0

Again the coefficient of 5 is obtained by putting s=n+r and then
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N < Xr , (_l)n+r xl]'ﬂ'
coefficientof t = Z?_r o 2" (n+1)!

r=0

. = (x n+2r 1
- -1 ; =D (—2—) ri(n+r)!

= (-D". 1, (%)
= V(X)) e (38)

since J_ (x) = (-1)" J,(x), wheren is a positive integer.

It may be shown as below :

1) = Z(—l)@ ‘

= oC(-n+r+1)’

which tends to zero if -n+r+1=0,i.e., r= n-1 (- Iro=wo).

Hence all the terms upto nth, vanish and therefore the limit r =0 may be changed to

© [ x -n+2r 1
() = ;(—l) (Ej " T(-n+r+l)

Now putting r = n+s, where s is a positive integer, we have

) (s T(-n+n+s+1)

» n+2s
L) = Y (%\ 1
s=0

@© e _)i n+2s 1
=§,(_l) (2) T (s T(s+1)

. . © . X n+2s 1 .':nA
or () =D Z;,H) (5) Sl T(n+s+1)
= (;1)“ J.(x)- e (39)

Hence from (37) and (38), we have

€0

M2 Z t" J.(x) A R (40)

n= -
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and

and

COROLLARY. Putting ¢=¢* and %=e“”,we get

ix €= iy
Exp(lx T]— Ze jIn(x)

or gising Jo(x)+ {J,(x) e?+J_(x) e'i’}+ {Iz(x) ¥+, (x) e‘Zi"} + o
or cos (x sin g) + i sin (x sin @) = J,(x) + J,(x) {ei” —e“’}+ J,(x) {ew +e"2i”}+ ........

[since J,(x)=J_ (x) when nis even]

= do(x) + 2i sin ¢ Jy(x) + 2 cos 24 J,(x)+........

- Equating real and imaginary parts, we get

€os (x sin @) = J,(x) + 2 cos 24 J,(x) + 2 cos 4¢ Jo(X) Foeees (41)

sin (x sin #) = 2sin ¢ J,(x) + 2 sin 3¢ J3(X)+ 28in 54 Jo(X) +ovrs e (42)

Replacing ¢ by §—¢ ,’we havé, from (41) and (42)

€os (x cos @) = J5(x) ~ 2¢cos 24 J,(x) + 2 cos 4¢ Jo(X) +eoee. . (43)
sin (x cos #) = 2 cos # J,(x) - 2 cos 3¢ J3(X)+ 2 cos 54 J5(x) +...... ....... (44)
Integrals for j,(x) and J, (x);" ‘

L Jo(x)=l rcos (x sin @) d¢g .
x40

We have by (41),

cos (x sin @) = J;(x) + 2 cos 24 J(x) + 2 cos 44 J (x) +

If we integrate both the sides of this relation with respectto g from the limits; o to é,

1en we see that all the integrals except first of the R.H.S. vanish, thereby giving

J'O"cos (xsing) do = Jo(x) J:d(p = 7 Jy(x)

. J,(x) = L cos (ng - x sin g) dg

We have already proved that
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cos (x sin @) = Jo(x) +2008 28 Jo(X) +2C08 AP J4(X) + s e (46)

and  sin (x sin ¢j = 2 J,(x)sin g + 2sin 3¢ J3(x) + 2 SINSPT(X) F crverrereee enenenene (47)

If We multiply (46) by cos n¢, (47) by sin ng and integrate between the limitsOto =,
we have : ' ‘

I:cos (x sin ¢) cos ng dg = O\ ‘ or- frIn(x) C aevseenses (48)
ad‘b‘ordihg as n is odd or even
~and ‘ _[Zsin (x sin @) sin n# dg = zJ,(x)  or 0 ... (49)

according as n issﬁdd or even.
Adding.(48) and (49), we find -

I:[cos (x sin g)cos ng + sin (x sin #) sin n¢] dg = 7J,(x)

whether n is odd or even

or - j:cos (ng - xsin.g) dg = 7 J.(x),
. I N
e, J.x)=— rcos (he-xsing)dp e (50)
R 0 .
.
1 (xY | oy .
J(x) = ———= (—) rcds'(x sin @) cos™ @ do
n\2) o 7 (51}
. r(‘?* 2)
if we expand cos ( sin @) in the.powers of x sin ¢, the general
. | 1" l er 4 2r
termis D an sin”" g,
Gerferat term of RiH.S. of (51)
| 2 X “ v f x2r s 2F SZn '
il RO - d ,
(z) R rer R

O
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f:sin2'¢ cos’" ¢ dg

n /2
2 Io sin’'@ cos"o do r
Put sin’g =t,

dt S 2singcos g dg = t

i

tl/:.’ (l_t)l- dt

J:t' (1)

J:t(Zr-l)/Z (1 =) 272 g

2r+1 2n+1
B ﬂ( 2 7 2 )
2r+1 2n+1
r( 2 )r('z ) [mIn
B 2r+1) (2n+1 + A(m,n) = I'(m+n)
JICSECY! '
2 2
2r-1 2r-3 | 1)
B 2 2 ...... Ew/—/;.l‘(n+—2—). |
- F(n+r+1)
Substituting this value in R.H.S. of (52) we have
_ 2 X " r ”x2r : 2r 2n ]
i TF('”TJ(ZJ 0" [ oy s #oos™s a9
2
= =| X L
\/;r(n+i) (2) <D (2r)! C(n+r+l)
7 2 :

2 (_J oy X7 @2r-1)(@2r-3).....1
2 ‘T(n+r+1) '2'.2r(2r-1)(2r_'2),_ 1

X n+2r ] 1
(3) "5 T(n+r+1)
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_ (—l)r (£]n+2r | I .
5 e - general termin J (x).

! } I"cos (x sin @) cos "¢ do

Hence "% ~ J,,—r(“ ) \ y ,

|~

9| —

[D] Recurrence Formulaefor J,x).
I. We know that

. n | X n+2r
J,(x) = ; =D r! (n+1)! (E) '

wherenis a positive integer.

Differentiating it w.r.t. x, we get

, P . ] X n+2r-1
V(x) = §(-1) Tl (n+2r) (5) 3.

Multiplying both sides by x, we have

< .- | X n+2r
x50 = é(_l) r! (n+r) (5)

- < _1\' (n+2r) _)_(_ nHar = v r i n+2r-1
) nzlo( D (n+r)!(2) +x 2 (=D Ta (2]

r= r=0

, - . 1 x n-l+2r
or X.Jn(X) = an(X)“FX;(—]) (r—])'(n+r)!(5)

[since on R.H.S. the second term vanishes forr = 1 and
hence limit of r = 0 may be replaced by r=1

Putting r-1=s, we have

‘ n+2s-1
x 1 X

, .J' - J + —l s+l.________' _

x.J,() = nJ,(X) xé( Y mries) (2)

s= n Jn(x) - X‘JJ“H(X) . R L (54)
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.‘s..kc
) , - r (n+2r) x )" g :
IL. Again X -J,(x) = rZ=O(‘1) et (;) (;) may be
written as
, _ v, , -n+2(n+r) _)iﬁzr
x-Ja(x) = §( b r!(n+r)! (2)
X n+2r ) ,/w | - 1 *n-l;Zr
- —nZ( b r'(n+r)’ ( ) * xg(;(—l) 'r!(n+r—1)!.(5J
= -nJ,x)+xJ_x (55)
sum and difference of (54) ans (55) give
m 2y0=J_ -1 (56)
o 2000 = x 1,0+ 0,0} S (57)
d n n :
V. K{x_ L= x" I, ) (58)
d n n-l noy
Here — " 3,00f = nx"1,00 + x" 3, (x)
o = x"! {11Jn(x)+xJ:,(x)}
= x""{niJn(x)—n J,(x)+x J,:_,(x-)} by (30)
| = X", ()" |
VI. Similarly it is easy to show that i
d -n -n
—{x Jn(x)}= - (59)

dx

[E] Examples :

P 1 o ) - .
Ex (1)Show that y=— 'J;cos (x cos gy d¢ satisfies the differential equation
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d’y 1 dy .
) i +y =0 andthaty |§ no other than J(x) .
Soln: Given y= % j:cos (xcosg) dg (60)

If we differentiate it w.r.t. x under the sign of integration, we find

dy 1 ¢ .
— = Io—cos gsin(xcosg) dg ... (61)
d%y 1y 2

and oo L—cos gcos(xcos ) dg . (62)

Now from (61), we have
- %: —}r—[ {sin (x cos @) .sin gl - I:— X sin ¢ cos (x cos ¢).sin ¢ d¢]
(integrating bypans)\ N
x rsin2¢ cos (x cos ¢) dg T
r o _

= X I:(l —cos’ @) cos (x cos g) dg.

w

X s X s cos (xeos ) dp 1
~ Iocos (x cos ¢) dg ~ jocos @ cos (x cos ¢) dg

d’y
Xy +X -3 from (60) and (62)

[

2
dy 1dy

b =0
dx® x dx Y

or

1 ¢~ - d’y 1 dy
= — d —_—_ _—— = .
Hence y=— jocos (x cos ¢) d¢ satisfies -5+ X dx +y=0, L.
which is the Bessel’s equation for n=0.
Since y=1 when x=0, therefore y is no other than J,(x), as J,(xyi being the

solution of Bessel's equation, is unity for x=0.

2\ . :
Ex (2): Prove that Jip(x) = (—ﬂ;) sin X, R
Soln: We know that |

X" x? x*
Jn(x)= 1- + SRR SR
2" r(n+1){ 2.2(n+) 2.4.2° (n+1) (n+2) ] |
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Ex(3):- Showthat ~
() J)=-J,x) and (i) 2J5(x)=J,(x) - Jo(x) .
Soln :  From recurrence formula (54) we have
xJ(x)=nJ (x)-xJ,,,(x).
Putting n=0, we get J\(x) = - J,(x),
which proves the first result.
Now differentiating it and multiplying throughtout by 2, we get

2J5(x) = - 2 Ji(x)

or 275(x) == [Jo(x) - 3,(x)] '
by recurrence formula III. (56).

=1,(x) = Jp(x).

EX(4): Provethat J,;00+1,s(x) = 2 (n44)5,,,.
Soin:  From recurrenec formula IV, we have
: T 2n Jn = X(Jn—l +"n+l)'
' Replacing n by n+1, we get

%(n+4) Jn+4’= Jnia +Jnss.
Ex(5): Prove that
€os X = Jo(x) = 2J,(x) +2J,(X) ...
sin x = 2J,(x) - 2J3(x) +2J4(x) .......
Soln : We know that
’ cos (x cos #) = Jo(x) — 208 26 Jo(x) +2c05 46 J(x) . | N (43)

and Sin (X cos #) = 2 cos ¢ J,(x) - 2 cos 3¢ J,(x) + 2cos 54 Jo(X) oo e, (44)
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Putting =0, we get -
cos X = Jo(x)=2J,(X)+2J4(X) e

_ sin x = 2 J,(x) =2 J3(x)+ 2 J5(X) ceren
Ex (6): Establish the relation '

(%) T, (x) = (x) I (x) = _2siinr-

X

Soln : We know that Jn(x)‘and J_,(x) are the two solutions of Bessel's equation

2 2
d—.yf“"l."(i_)]""‘ -5y =0
dx X dx 2

: Cdy d’y _ . '
Hence, it y=1,(0, =100 and 5 =Jj(x), we have from (26)

J”(xv)+—1—J'(x)+ 1—9—2— J(x) =0 :
n X n Xz n =V cddisesensees (63)
\ ‘:~ "
Similarly putting y =J_,(x), we get from (26)
3" (x)+lJ' (x) + l—f—\.l x) =0
-n : X -n XZJ -n - : ‘wesessesnsas (64)

_ Multilying (63) by J_,(x), (64) by J"‘(x') and then subtracting (64) from (63), we
have

I (x) )= Jll(x)+—l—{J:](x)J_,l(x) _ 1) 1,M)=0
X
Put z=1J,(x)J_,(x) - J(x) ), (x).
2= 1) T (%) + () 1 (x) = T (0 T (%) - J7 . (x) (%)
=1 (x) I, 00 = I, () 1,(x).

1
:——-\.
X

NN

z
Thus 7' +; =0 or

Integrating,  logz = —logx + log C, where C is some arbitraty constant.

RN - C
or T, () =1 (x) (%) =T



AGHARYA NAGARJUNA UNIVERSITY 24— - CENTER FOR DISTANCE EDUCATION] '

. . . 1 . . .
Equating the coefficients of 2z on either side, we get

1

. =(-n)} = C
2"T(n+1) 27" I(-n+1) n=(m}
2n 2
or C= r =
(m+1)T(-n+1) I'nT(1-n)
2 2sinnz z
"~ zlsinnz r - In I‘(l_n)_sin nr v (19)

(Gamma functions).
Hence J,(x)J_,(x) - J' (x) J,(x) = 2sinnrz

To prove that fJn(ﬂr) Jo(ur)r dr = 0 where # and ' are different roots of
J,(ua)=0. |

Since J_(x) is a solution of Bessel's equation,

d’y 1 dy n?
— =+ ]-— 0
Tt [ XZJy ...... .. (26)

therefore putting x = #r and callingy = u in (26) we get

2 2
Lj_dfq.Liill.;. | - l: —|u = 0
M dr HMT u dr aore

by _du_du g @ da

dx dx dr dx 4 dr

L dx? - X dr
Multiplying throughout by .2,

2 dzu du 2 2
rF+rI+(,ur2—n)u=0 ........... (65)
Similarly putting x = ./r and calling y = v in (36), we have
a d*v dv 2. 2
r F-*.rgr— + (u r*z?n‘)'v=0 ........... (66)

If we multiply (65) by % (66) by —:— and subtraét
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(r.vu” —ruv") + (vu'—uv)y + (pr-pg*)yrvu =0,

where =3 and V=
dr

d 2 )
or L rfur-unf+ [ —aD)evu =0, e (67)

where_z_u =J (ur) and v =J,(#7)
Integrating (67) w.r.t r between the limits 0 and a, we get

[f 0, Ty0) = 1,0 Ty (an) b
+ [ -4 3,0 DT dr =0

The first term vanishes for both the limits since
J,(#a)=0;J,(#a) =0

Hence j:(/lz—/l'z) I (ur) J,(gr)r dr =0

ie., [ Jaun) L (ur) 1 dr =0 =20 (68)
[G] ssel f :
Bessel's differential equation of n th order is
d’y 1 dy n’ ' ‘
_ ] —— =0
dxz X dx +( x2 y =V e (26)
. dx . dz |
Put x=iz sothat—)5=l or Z-2
' . dz dx 1
dy dy dz _ ldy
xS e a2
dy =_d_(19_y_) _1 @y e 1dy_ dYy
dx?  dx\idz i dx?dx i dZ dz?

with these substitution, equ. (26) becomes

dly 1 1 dy n?
——t .=+t =0
@z ie L 2)

d’y 1 dy n’
- 2 |1+=|y = 0
or a2z dz ( 22 y =V e (69)

This is called modified Bessel equation. :
The modified Bessel function is obtained by putting x =iz inthe function



B =3 0 (_)
g A HrreD! (2 JE— (32)

r=0

@ ( l),- 2z n+2r
SN - et S2r
L =2 r! (n+r+1)! (2] -

r=0

_ © 1"(-—1)2' (E]n+2r _ i in (Z)n+2r
S ot (m+r+1) (2 <l (m+r+ \2)

« n+2r
. ccn ot s z
or a2) Z (1) (n+r+l)' (_) :

r=

a g . 1 X\
or L&) =i"]) (ix) = Z m (%) ............. (70)

r=0
is called the modified Bessel function of the first kind of order n.

(1) Show that 2" F(n +%) = 135 (2n—1)J;_

Soin : We know that I'(n+1) =nIn

g (09

H
N
=
|
N -
N——
N
=
|
N W
N
TN
=
|
N | wn
N—_———

_ 2n-1 2n-3 2n-5 53 1
=S S e = 5\/—
1350 (2n-5) (2n-3) 2n-1)

2“ J_

or 2“F(n+%) = 1350 2n-NVJz .




Soln : Let 1= I"\ﬁ—x— ’
Put x" =sin?d = .. x=sin?"@

2-n

dx =2 sinn @ cosd df
n

/

S0 =£ j sm Bcose o
n

cos 9

%j’ sm“¢9d¢9

zr
r(%#) n from (22)

Aew!
TN
5 |-
N’
&y

(3) Show that the beta functions satisfy the following relation
, pa,b). fla+b,c) = Bb,c). fa,b+c).
. Soln: We know that

FaI'b -
,b) =
Aab) = T vy |
rarb T@+b) I'c _ IaIbrlc
L.H.S. of the problem = F@+b) T(a+b+c) T(a+b+c)
Mrc Tal(b+c) aI'bIc
R.H.S. of the problem = [(b+c) T(a+b+c) T(a+b+c)

Hence the result.'

J,(x) = Jif sinx
X
2
and J_,,(x) = J—— . COS X,
X

Hence derive the expression for J.s,(x).

(4) Show that
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Soln:  For the expression for Ji,2(x) vide ex (2).

I, ,
For J_,,(x), put n == inthe expansion

n 2 4
J(x) = —= [l X L J

- +
22(n+1) 2422 (n+1)(n+2)

2" T(n+1)
we get
-1/2 2 . 4
I 12(x) = _x I_X__+ x
2712 r(l) 2 234
WA
_oxn l—£+ o
- 112 F(l) TR T ,
2

’2
= Lf— cos X,
X

we know the recurrence relation

20d,() =x[1,,00 +1,00)] e (57)
Putting n=1/2, ‘ .
Ji2(x) = x ["-I/Z(x) +Js/2(x)J

) 1 '
or J;(x) = ; J120%) = Juy2(n)
1 2 . 2
= — "—— sin x —‘/—— cOos X
X X sz
, 2 (sin X )
= - - cos X
X X B

Again putting n=-1/2 in (57), |
: - J_|/2(X) = X ,_J__‘,/Z(x)‘ + Jl/z(x).l AN

, ' I
or J_3(x) = —— (%) = J,,(x)

X
1 ]2 2

= —-— [— cosx - [— sinx
x Y7x X

2 |cosx .
= - [— + sin x
X X
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211, Summary of thg lesson

requi
The series solution of Bessel equation i

Before going into the subject of Bessel function, it has been aimed at the basic
sites of beta and gamma functions which find their importance in this and future lesson.
s found. Generating function and the integral

representation of J_(x) are given. Recurrence relations have been derived and examples
are worked out. Orthogonal properties and Modified Bessel functions are given as special

topics. A few miscellaneous examples are given.

2.12. Key terminology

Beta and Gamma function - Bessel differential equation - indicial equation -

generating function - Modified Bessel function.

2.13 Self - Assessment questions

1.

(a) Define beta and gamma functions and derive the relation connecting them.
(b) Provethat A(a,b+1)+ fa+1b) = fAla,b).

. (a) Shdwthatr(%—n)'F(%M) - (hrx,

2
(b) Using beta and gamma functions, evaluate on 8-x»)" dx,

. (a) Provethat J_,(x) = (-D" J,(x).

(b) Show that J_(x) is even for even n and odd for odd n.

. (@) Prove that :—X[X“Jn(X)] = x"J ,(x).

(b) Evaluate Ix3 Jo(x) dx .
(a) Find out J,(x) directly from the zeroth order Bessel differential equation.
(b) Establish x? J(x) = (0® —n—-x*) J,(x) + x Jp,1(x)-

. (@) Showthat J,(0) = 2 [,1(0 = Jan (0]

(b) Provethat [Jsdx = - [l +2J;+21,].

2.14 Reference Books

1.

2.
3.
4

B.S. Rajput “Mathematical Physics”, Pragati rakashan, Meerut, 1999.
B_;D. Gupta “Mathematical Physics”, Vikas Publishing House, 1980. .
K.V. Churchill ‘prerationaI Mathematics”, Mc-Graw Hill Book Co., 1958.

E. Kreyszig “Advanced Engineering Mathematics”, Wiley Eastern Pvt.Ltd., 1971.
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Unit -1

Lesson — 3

HERMITE POLYNOMIALS

Objectives:

>

YV V V V

To solve the Hermite differential equation in power series.

To differentiate between Hermite polynomials and Hermite functions.
To prove recurrence relations using generating function.

To give Rodigue’s formula and other differentiable forms.

To give the integral representation of Hy(x).

Structure:

3.1 Introduction

3.2 Solution of Hermite differential equation

3.3 Hermite polynomials

3.4 Recurrence formulae

3.5 Generating functions

3.6 Another differential representation of H,(x)

3.7 Hermite functions

3.8 Orthogonal Properties of Hermite polynomials

3.9 Integral representation of Hermite polynomials.

3.10 Summary

3.11 Key Terminology

3.12 Self — assessment questions

3.13 Reference Books

3.1 Introduction:

Hermite polynomials are the power series solution of second order Hermite differential

equation with variable coefficients. They will be need mainly as a mathematical tool in dromy of

the scientific problem. Very familiar applications in quantum mechanics is the simple harmonic

oscillator. While the ground state is given by the gaussiane function, higher states are given by

products of the respective orders of Hermite polynomials with the gauseare functions.
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3.2 Solution of Hermite’s Differential Equation:

This equation is of the form

2
d’y -2x d—y+2xy=0 ---------- (D

dx? dx

where y is a parameter.

Suppose its series solution is

y= ;0 a,x“". 220  andkisaconstant ---------- (2)
d ©
Sothat 2~ = 3 a (k + 1) X
dx =0
d’ 2
and “2= % a(k+r)(ktr—1)x
dx r=0
ituti dy d% o
Substituting the values of'y, . and —- in (1), we get the identity
X X
;0 [(k+n)(k+r—1D)x" 2 Kk+r-v)xa,=0 - (3)

Equating the Coefficient of the first term (i.e. x*~2) (by putting r = 0, to zero, we get
ak(k—1)=0givingk=0,1asay#0 -----—---- 4)

Now, equating to zero the coefficient of second term (i.e. x* ') in (3) we get

a; k(k+r)=01i.e.a; =0 when k=- 1 and a; may or may not be zero when k = 0, as the values
of k are aheady fixed as in (4)

Also equating the coefficient of x* " to zero, we find
ank+tr+2)(k+r+1)-2a(k+r-v)=0
giving the recurrence relation

2(k+r1-v)

drip = (5)
(k+r+2)k+r+1)
when k =0, (5) becomes arpp = 2(r-v) a (6)
(r+2)(r+1)
and when k =1, (5) becomes a,, = 20 +r-v) a (7)
(r+3)(r+2)
Case I. When k=0, puttingr=20, 1, 2, 3,... in (6) we have
2:—3 Vag, a3 __2(v—1) aj
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2= o 2(v=D(v-3) N 2 (D V=2 (v =2 42)

Ay =

b

4 E B
_ (2 (v-D(v=3)...(v=2r+1)
1 = a4
| 2r+1
Now if a; =0, then a3 = as = a; = a4 = ...=0.

But if a;#0, then (2) gives fork =0,y = ;1 ax"

ie. y=ayt+tax+ ax’ + asx’ +...

=ap+ ax’ +axt .. Fax+ax’ +asx’ +...

2
= a, l—gx2 +Mx4 -+ (=D
12 14

2r
| 2r

V(v =2)...(v=2r+2)x* +...

— 2 — f—
+a1x{1— 2(T3 Dy 270 |15)(V 3) —...

T

+(=1)

|2r+1(v—l)(v—3)...(v—2r+1)x2r +} .......... (8)

=a, {1 L D2 v =2)..(v=2r+2)x* + }

=1 | 2r+1
+a{x+él%(v—l)(v—fs)...(v—h+l)x2”1... ---------- )

Case II: When k=1, then a; = 0 and so by puttingr=20, 1, 2, 3, ... in (7) we find

N 2(\|’_3—1) .
2 r
aq = 2 (V_l)(v_3) . 7 T a2r=(—1)2 (2V—1)(V—3)...(V—2r+1) ao
15 | 2r+1

Hence the solution is

1_2(v—1)X2 +22(v—1)(v—3)x4 _
3 |5

= apX
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N D' 2"(v-D)(v-3)...(v-2r+1) 4
| 2r+1

clearly the solution (10) is included in the second part of (8) except that a, is replaced by a; and
hence in order that the Hermite equation may have two independent solutions, a; must be zero,
even if k = 0 and then (8) reduces to

2 —_—
y=a {1—?—;# +%x4 et (1)

2r
| 21

v(v=2)..(v=2r+2)x* +:| ---------- (11)

The complete integral of (1) is then given by

2 _ _ 2 _ _
y=A 1—£x2+—2 v 2)x4—... + Bx 1_2(v 1)X2+2 v=Dlv 3)X4—...
12 |4 13 15

where A and B are arbitrary constants.

Where v is an integer, then the resulting solution is called Hermite Polynomial. The arbitrary

v—1

v =
constant A and B are taken as (-1)"% |=and (—1) ? respectively.
v

2

In equation (12), the series with coefficient A alone is taken as the Hermite Polynomial of even

order v and that with coefficient B alone is considered as Hermite Polynomial of odd order v.

3.3 Hermite Polynomials:

The Hermite polynomial H,, (x) is defined as

2tx-t2 n

flx, )= = EO H, (x) |t_n —————————— (13)

for all integral values of n and all real values of x. (At a latter stage, it will be proved that the

exponential function is the generating function of H, (x)) (13) can be written as

x2 -(x- )2
fix, )= © PoHL B HE L, &
n

O f(x, t) H. (x)
6tl’l

"+

So that [ = |n =H, (x)

t=0
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Ifweputx—t =p ie. t=x—pfort=0givesx=p

and °o_ 9 so that o {e'(x't)z } = (*l)na— e
ot op ot" op"

an -(x-1)? n an x? n dn x?

Sl =—€ =(-1 e’ =(-1 S 15
{&n y 1) o D " (15)
From (14) and (15), we therefore have
H, (x) = e D" o (e"‘z) (Rodrigue’s formula) ---------- (16)
X

From (16) we can calculate Hermite polynomials of various degrees such as
H,(x)=1 H,(x)=16x" —48x” +12
H,(x)=2x H,(x)=32x> —160x> +120x

H,(x)=4x"-2  H,(x)=64x° —480x* +720x° -120
H,(x)=8x"-12x H,(x)=128x" —1344x’ +3360x> —1680x

3.4 Recurrence formulae for H,(x) and to show that H,(x) is a solution of Hermite Equation:

Hermite equation is y''-2xy’ + 2ny = 0 for integral values taking v = n.

2 » H t"
AISO, eth—t — z n (X)
n=0 | n

(18)

I Differentiating partially w.r.t. x, we have

0 tn

2e™ V= T H,(x) —

n=0 |n
> H x)t" = t"
e oy LU g H, (x) —
n=0 n n=0 |n

n

which yields on equating the coefficients of |— on either side,
n

|n

2—— Hu(x)=H: (x)
In-1

Le. 2nH . (x)=H', (X)  -—mmmmmmme- (19)
II Differentiating partially w.r.t. ‘t’, both sides of (18) we get

n-1

In-1

2Ax—t) e = Zjl H,(x) “.n = 0 corresponds to the vanishing of R.H.S.
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HERMITE POLYNOMIALS

n n+l n-1

e} t 00
or2x X H,x) —-2 X Hy(x)
n=0 | n n=0

= %i:l Hi(x)

In-1 In-1

Equating the coefficients of t" on either side we find

XHn(X) ) Hn—l(x) — Hn+1(X)
n -l

2

ie. 2x Hy(x) =2nH,(x) + Hyi(X)  ----------- (20)

I Eliminating H,,.;(x) from (19) and (20) we get
2x Ha(x) = H's (x) + Hun1(x)

or  H'y(x) = 2x Hy(x) — Hye1(X)  -===------ (21)

v Differentiating (21) w.r.t. x we find

H," (x) =2x Hy (x) +2 Hy(x) — H'1+1(X)

Putting H',.1(X) = 2(n + 1) Hy(n) obtained from (19) on replacing n by n + 1; we have

H,"” (X) =2x Hy (X) +2 Hn(X) —2(11 + 1) Hn(X)
or H," (x) 2xHy' (x) +2n Hy(x) =0 ---mmoemmv (22)

which clearly follows that y = H,(x) as a solution of Hermite equation is proved by considering

the generating function.

Q: Prove that

1
(i) Hau(0) = (=1)"2°" [EL

3
(11) H’2m+1(0) — (71)m22m+1 (Ejm

(iii) Hami1(0) = 0
(iv) H'20(0) = 0

d" 2%|n

v) {Hn (x)}= — H,_n (X), form<n
dx™ |n-m

Solution:

(i) Even Hermite polynomials are

m (=1)*| 2m(2x)*™*
Hom(x) = 2 ) 2
k=0 |k|2m-2k
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(=D"[2m »2m2m-1)..3.2.1 _

D

2" m(2m-1)2m-3)..3.1

o) = e O . 3.2,

| m
= (_1)m= 2
| m

= (-m 2 % % GH) ...Gﬂn—lj = (=" 22“1(%)“1

(ii) From recurrence relation I, we have on replacing n by 2m + 1,
H 3 (x) = 2(2m +1) Hyn(x)

H'zmﬂ(o) = 2(211’1 +1) H2m(0) = 2(2m +1) (_l)m 22m (%j

by part (i)

2m

=D 22'““(2m+1)B-6+1J---Gﬂn-lﬂ
3
= (-1 m 22m+1 =

(iii) Odd Hermite Polynomials are

= (2m +1) (_l)m 22m+1 |:(2m - 1)(2m = 3)...3.1:|

1
2m+5 _1 k 2m+1 2x 2m+1-2k
Ha(0= 3 SN (2x)
k=0 |k(2m +1-2k)

. Hom+1(0) = 0, since all terms containing x become zero.
(>iv) From recurrence relation I, we have
H'om(x) =2(2m) Hpp1(X)
- H'5n(0) = 4mH,,,,.1(0)
= 0 by (iii)
(v)  From recurrence relation I, we have

H', (x) =2n H, 1 (X) ---------- (1)
ie. 4 {Hn (X)} =2n H,.(x)
dx

d2
dx?

d
H, (x)}= 2 {H, ,(x)}=2n.2(n - 1)H, »(x)
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by using (1)
= 2°n (n— DH,_(x)
3

Similarly ;—3 {H, ®)} =2°n (n— 1)(n-2)H,_3(x)
X

Proceeding similarly m times we find

dm
o {Hn (X)}= 2™ (n—1)...(n—-m+ 2)H, _,(x) where m <n
2" |n
= — H,_m (X)
|n-m
3.5 Generating functions:

n

Q: To prove that et = ZO -~ Hy(x). Where e is called the generating function of
=0 n!

H,(x).
Solution: We have

i g e 5 O 2 () 220
=0l s=0 gl rs=0 rls]

.. Coefficient of t" (for fixed value of s)

n-2s
=(-1) % (putr+2s =n)
But the total coefficient of t" is obtained by summing over all allowed values of s,
(forr=n—2s>0)
s.n—2s>0i.e.s<(n/2). Sowe can say, that if n is even s goes from 0 to (n/2) and if n is

odd, s goes from 0 to (n —2) /2.

[n/2] 2 n-2s H
Hence required coefficient of t" = X (-1)° (2%) = — x)
s=0 (n-2s)!s! n!

n , n
(Here [5} means the greatest integer that does not exceed E).

2 2 tn . 2 2 ® tn
=e”™*" L — H(x)ie, e =3 — H(~x).
n=l p n=0 pn!
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3.6 Another differential representation of Hermite polynomials (H,(x)):

1 d?
: Show that H,(x) =2" |- !
Q ow that H,(x) {exp[ 4 ]} X

Solution: We have

l ie(th) — 2™ = i (liemj =2t 2™
2 dx dx \2dx

2
l i liem —P el li Q2% = 2 21
2 dx \2dx 2 dx

Continuing up to n times, we get

Gdij R (A)
X
2 © 2 \"
= exp, _1d =~ |p.e?= §L _1d AR
4 dx n=on!l 4 dx
n 2n . _1\n

_ 5 (-1 li e2x= 3 (=D 2 2 X (using A)

n=0 n! 2 dx n=0 n!
=F" (_1,) -t 3 Ly

= n! n=0 |

— 2 e—t2 _ ot

1d> )] =1 I A
:{exp.(— Z dXZ j} nizlo E (2tX) = HEO ; Hn(X)
[using generating function property]

Whence equating the coefficient of t" from the two sides, we get

ex 1 & 12nn lH()ie Hy(x) =2" {ex 1 & "
| == — 2" = — Hy(x)i.e., Hy(x) = - X"
PU%a [m” " T P s

3.7 Hermite functions:

An equation closely related to Hermite equation is

If we change the dependent variable y to y by the substitution
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Yy=e" Y e (24)
d 2, d >
So that =¥ = ¢*'2 —ye™ %X
dx dx
and d’y — e N2 d’y e 2 dy (e—x2/2 2™ )y
dx’ dx’ dx
we get from (1)
y'=2xy'+ (A-1)y=0  ---omomem- (25)

If we put A —1=2v, then (25) reduces to Hermite equation i.e.
y'=2xy' +2vy=0
It therefore follows that the general solution of (23) is given by
v = e-x2 /2 y
where y is given by (12)
Thus if the parameter A be of the form 1 + 2N, n being a positive integer, then the solution of
(23) will be constant multiple of the function y, defined by
Yn(x) = ™ P Hy(x) wreeeeees (26)
where H,(x) is the Hermite polynomial of degree n.

Here the function y,(x) is said to be the Hermite function of order n.

Recurrence Relations for y,(x):
Differentiating (26) w.r.t. x, we have

ya(x) = e/ H'\(x) — e 2x Hy(x)
—2ne™ 2 H, ,(x)-xe™ ' x Hyx) o H(x)=2nH,_(x) by (19)
=2n i 1(X) — X Wy(X) using (26)

220 W 1(X) = Wa(X) + (X)) e (27)

Also from (25), 2x H,(x) =2n H, _;(x) — H, +1(X)

Which may be expressed by using (26), as

2xe™? Hyx)=2ne™ 2 (x) + e /% Hyt1(x)

ie, 2xyu(x)=2nvy, ((X)+ yus1(X) --mmmmmmm- (28)

Eliminating 2n y, _{(x) from (27) and (28) we find

X Yn(X) + W'n(X) = 2X Yn(X) =Y +1(X)

ie., V(X)) =X Wa(X) = Yo+ 1(X)  -mmmmmmmen (29)
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3.8 Orthogonal Properties of Hermite polynomials:

Now since Hy(X) is a solution of Hermite equation, we have
H"(x) — 2x H'(x) + 2n H',(x) = 0 by (22)
_ x%/2 . _ x2/2
Ifweputy=-e H,(x) i.e.,, H(x)=ye
So that H',(x) =y’ X2 4 Xy er?
and H",(x)=y"e* 2+2xy'e* /2 +y(1 +x) e* 2
then we gety”’ + (1 —x>+2n)y =0 -------——- (30)
Sincey = e/

Y t2n+ 1 -x) gy =0 ---oeev (1)

Hu(X) = yu(X) by (26), it therefore follows that y,(x) satisfies (30) and hence

for a function v, this relation is

YintQm+1=x) yp=0 -ceoeeeee (32)

2(M—10) Wi Yo = Y'n = Yo' oo (33)

Integrating over (—o0, ), we have

2m - 0)[°, W Yo dx = [, (Wp”n — W' m)dx

= [l//m v' -y ]io W a— W yn)dx (on integrating by parts)

=0 *Wa(x)—0 as [x| > o for all positive integral values of n.
or fffw YnWodx=0 ifm#n
symbolically I, , = | W Yndx = | . e Hin(x) Hy(x)dx =0
whenm=#n -------—--- (34)
In particular I, | n+1=0 ---------- (35)

Now from (28) we have 2x y,(x) = 2ny,, _1(X) + ¥+ 1(X)
o 17 2x () e dx =200 07y (%) F W (%)
[2, Wa 1 Was 1 dx =0 by (35)
=2nl, 11 -mmeeee- (36)

Also y,(x) = e/ Hy(x)

= (1) e¥ 2 (i—nn (e )by (16)

Thus (36) gives
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. d" 2 dn_l 2
_J.iow 2xe” X" (e'x ) B (C-X )dX:21'l Infl,nfl
X

0r2nIn71,n71:—Ide(exz) . (e_xz)i::l (e_xz)dx

n n-1 @
{e* )l (e"‘z)} +r e

dx 'dx“'l .
d" (_z)d“ (_z)d““(_z)d"'l(_z) . .
e” e” e e™ Jtdx (on integrating by parts)
{dxn an an+l an-l g g YP
:0+In,n+ln+1an—1
=Inn by (35)
Ina n:2n In—l,n—l """"""" (37)

Applying (37), repeatedly, we have

Lyo=2nl 1 n1=202—1) 112,02
=2n(n-1).20-2) I, 3,43
=2nn-1)(n-2)L_3,n 3

=2"n(n—1) (0 —2) .......3.2.1. To,

where Iy, o= |* e dx= A7 (From Beta and Gamma functions)

00

O R N L R A — (38)

Combining the two results (34) and (38); we have in terms of Kronecker delta symbol
Loy =17, € Hi(0) Hy(x) dx=2" [0 37 8y —oreeeeeee (39)

Where 8,,,,=0 when m=#n
=1 when m=n.

(39) may also be written as
Lo 0 =7 W) Wa(x) dx = [%, €™ H(x) Hy(x) dx
=2" [0 V7 Sy oo (40)
Again 2x y,(X) = 2n y,_ 1(X) + yuei(X) gives
| 2 X Wn(X) Wa(x) dx =nly, 1+ % Ly nt1

=0form#n=1
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N

o 1
and I_OO X\Vn\VnH(X)dX:nInH,n—l + 5 Inﬂ:n—l

2" In+1+/7 asabove

| =

=2" |(n+1)\/; form=n

Hence |, X yu(%) ya(x) dx =2"[n +1 NE N— (41)
Further 2n vy, 1(X) = x yu(X) + y'(X) gives
[ W) W) dx = 20 [, (%) W 1(%) dx = J7, X win(X) Wia(x) dx
=0ifm#n=1

and 2nIn,1,n,1—2“*1|_n\/; ifm=n=1
:2n|_n\/;_2n71|_n\/;:2n71|_n\/;

Hence |7, () Wa(x) dx =2""" |0 N7 8 —-oomeeee (42)
In the last if we take m =n + 1, then

[7 W) Wa(x) dx = 20 [, W (%) Yo 1(%) dx = [7, wnea(x) wa(x) dx

=—2“‘1|_n\/;.

Q: Prove that H,(—x) = (=1)" Hy(x)

> H_(x)t" 2 : 2 (2x)"Mt" = (-t
Solution: We have X H, 0t =™ V=M™ e'= X (2x) x 3 (1)

n=0 | n n=0 | n n=0 | n

o 102 (_1\k n-2k
o eveyt,

n=0 k=0 |k |n-2k

n

. . t . .
Equating coefficient of |— on either side, we get
n

m2) (—=1)*[n (2x)"*

Hyx) = %
(= 2 k| n-2k

Replacing x by —x we get

w2 (=) n (=2x)"*
H(0= '3 (=D"[n (-2x)
o k|n-2K
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[“2/2] (—l)k(—l)n_2k|£(2X)n_2k

o k| n-2k

w2 (=1)|n (2x)"*
=" 2 —

o [k|n-2k
= (=1)" Ha(x)

Q: Prove |7, xe™ Hy() Hu(x) dx = V7 [2' ' [08001+2" [ 41 8p01,0]

Solution: Integrating by parts we have

00

[* xe™ Hy(x) Hn(x) dx =] —%e"‘an x)H_ (x) dx}

—0

ol e S

: ™ H,(x) H,, (x) }dx

=0+ ]”, X {H, (x\)H, (x)+H, (x)H (x) Jdx

% [~ e™ [Zn H  (x) H x)+2mH (x)H,_,(x) dx]dx
by (20)
—nJ” €™ Hy 1(x) Hox) dx + [ ™ Ha(x) Ha 1 (%) dx
—n VZ2" ' n-18m. 1 +m V72" [0 Sy
(by orthogonal properties)

= VT2 [0 8ma 1 +2" [0 4] Sy

B 811, m-17— 8n+1, m-

3.9 Integral representation of Hermite polynomials:

Let us find an equivalent expression for H, in terms of a definite integral. If we put

and take the contour around a circle which has the origin as its center, then

9, _ L 277" dz (44)
dx 271

and
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N

d’ 1 el X ()
yzn — ‘ 4Z n+lex (z—x) dZ
dx 2r1
The differentiations here may be performed under the integral sign. When these derivatives are

substituted on the left of the Hermite differential equation, it is found that

1 2 2
Yy = 2xy'n + 2ny, = —§;(422 —4xz+2n)e* Y zMdz

2ri
_ L fd ey
2riY dz

The last step follows because the contents of the parenthesis, being a single-valued function of z,
if n is an integer, takes the same value at the initial and final points of the contour integration. It
has thus been shown that expression (43) is also a solution of Hermite’s equation. Since it

represents a polynomial in X it must be identical with H, (x) except for a constant multiplier. So

H, (x) is proportional to y,(x) or H, (x) =k y,(x), at x =0,

2
H, (x) _Eh o for n even
no
)
=0 for n odd
And from (43) y,(0) = L§z‘““ e” dz i “k=|n
T i |n/2 k=N
H _ |_n —n-1 xz—(z—x)2
ence H, (x) = —‘igz e dz - (45)
2ri

3.10 Summary:

The solution of Hermite differential equation is worked. Different series are obtained for even
order polynomials and odd order polynomials. Hermite functions are defined as a product of
Hermite polynomial with an exponential function. Generating function, recurrence relations,
Rodrigue’s formula, differential as well as integral representations and orthogonal properties are

given with worked out samples.

3.11 Key Terminology:

Hermite Polynomials — Hermite functions — Generating function — Rodriguez formula —

Orthogonal properties — Integral representation — Differential representations.
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3.12 Self — assessment questions:

1. Solve the differential equation in power series

2
d )2/ —ZXQ +2xy=0
dx dx

when A is an odd order integer. Hence obtain H3(x)

2. Prove the Rodrigue’s formula for Hermite polynomials

n

Hy(x) = et " (e'x2 ) for all integral values of n. and hence find Hj(x).

dx”
3. Following generating function of Hermite polynomial, hence that y = H,(x) is a solution
of Hermite differential equation
y' =2xy +2xy=0
" "

{Hn (X)} -2 H, ,(x) for m<n.

" |

4. Show that

5. Prove that [, €™ Hu(x) Hi(x) dx =2" [0 /7 8,1

6. Show that [”, yu(x) y's(x) dx =2""" |0 V7 8

x2/2

Where y,(x) = ¢
7. Prove that Hy(—x) = (—1)". Hy(X).

H,(x) (See equation (42) of the lesson)

8. Prove the recurrence relation of the Hermite function

2X ya(x) = 20y 1(X) + Y (X).

3.13 Reference Books:

1. B.D. Gupta ‘Mathematical Physics’, Vikas publishing House, Sahibabad, 1980.
2. B.S. Rajput ‘Mathematical Physics’,Pragati Prakashan, 1999.
3. H. Margenau ‘The Mathematics of Physics and Chemistry’, Affiliated East — West Pvt.

Ltd., 1971.
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Unit -1
Lesson — 4

LAGUERRE POLYNOMIALS

Objectives:

» To find the solution of Laguerre differential equation.
To derive associated Laguerre Polynomials.
To provide integral representation of Laguerre Polynomials.

To find the differential representation of Laguerre Polynomials.

YV V V VY

To prove the recurrence relations and orthonormalisation property of Laguerre

Polynomials.

Structure:

4.1 Introduction.

4.2 Solution of Laguerre’s differential equation

4.3 Associated Laguerre Polynomials

4.4 Integral representation of Laguerre Polynomials.
4.5 Recurrence formulae for Laguerre Polynomials
4.6 Differential (Rodrigue) formula

4.7 Orthogonality of Laguerre Polynomials.

4.8 Examples.

4.9 Summary

4.10 Key Terminology

4.11 Self — assessment questions

4.12 Reference Books

4.1 Introduction:

There are very many particular differential equations which find all important place in the
scientific applications. Laguerre’s second order differential equation with variable coefficients is
one such. Particular attention may be drawn to the radial wave equation in quantum mechanics
isomorphous with the differential equation in mathematics whose solutions are associated

Laguerre functions. But stress is given in this lesson to only Laguerre Polynomials.

4.2 Solution of Laguerre’s Differential Equation: Laguerre’s differential equation may be

written as xy" + (1 —=x)y' + Ay =0, where A = constant ~ ---------——-- (D)
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This equation has a singularity at x = 0. But the singularity is non — essential or removable

and hence the method of series integration is allowed by Fusch’s theorem for solving this
equation. For this purpose, we takey = X alxK+l (where k is constant and a, # 0) as the solution
1=0

of given differential equation.

Thus y' = 21)(k+1) ax " landy" = Ell(k-i-l) k+1-1)ax* "

Substituting these values in equation (1), we have
%&ﬁﬂf&xkﬂ_l—%aﬂk+1—%)x“150 --------- )
This equation is true for all the values of x and hence the coefficients of all the powers of x are
k-1

identically zero. As such equating to zero the coefficient of the lowest power of x, i.e., of x" ™,

we have the indicial equation as

K’ag=0 ----mm ©)
since ap # 0; so equation (2) holds good only if k = 0. Then, we have
TPax'" '-Tal-0)x'=0 ---eeeee- 4)
Equating the coefficients of X' to zero, we have s = ,J A >
G+1
This is the recurrence relation for the coefficients.
Thus a;=—Aag = (—-1)A ay,
_1-2 VRS VIV I V2 ) I ,AA-1)
Q= 52 (—hag) = 52 A = (2!)2 ao=(-1) (2!)2 ag.
2-1 AA=-1)(A1-2 AA=-1)(A1-2
e 0 C el BP0
3 3" 31
r-1-4 CAA=-D.(A-1+1
a=——F—a =(-1) ( ) (2 )ao.
r (r")

+(=D)

Soy= anlxl =a|l1-Ax+

@)’ a: T

If A = n, a positive integer, and if, we put ap = n !, (some authors may take ap = 1) then the

2D o rﬁ,(l—l)...(/l—r+1)xr+“} )

solution for y contains only (n + 1) terms and becomes the Laguerre Polynomial of degree n.

b (=121 0>
Thus (5) becomes L,(x) = EO%XF
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2 2 2
=(—1)2{X“ —nl—'x“"' +%x“'2 ++(=D"n!| -mememmee- (6)

This is the expression for Laguerre’s Polynomial.

Equation (6) gives Ly(0)=n!, Lo(x) =1, L;(x) = 1 — X, Ly(x) = x> —4x + 2,

Ly(x) =%+ 9x> — 36x + 6, Ly(x) =x"— 16x° + 72x* — 96x + 48, and so on.
Thus a Laguerre’s polynomial is the solution of equation

xL,)" (x) + (1 -x)L,/(x) + nL,(x)=0  -------—-- (7

4.3 Associated Laguerre’s Polynomials:

Differentiating equation (7) p times, we have

Ordinary Differential Equations and Useful Polynomials
d**’L d”'L d°L
X +(p+1-%x) +(n-p) =0
dx?*? dx P dx”
d'L, (x)
p

dx

If we substitute y = in this equation then we get

xy"+(p+1-x)y'+(n—p)y=0. where p is an integer 2 0 ---------- C)

Thus the solution of equation (9) is

d°L, (x) _
dx”

This is called the associated Laguerre polynomial of degree n — p.

Let v satisfying associated Laguerre differential equation
xV'+(p+t1-x)V+(n—p)v=0 ---—m- (10)

be related with another function y by the relation

y= o M2y (D2,

or
v = ye ¥y D2,
Substituting this expression of v in equation (10), we get

2
Xy”+2y’+{n-p2_1—%—pébgl}yzo —————————— (11)

As seen from equation (9a), v =L,p (x).
So solution of equation (11)isy =e™*x? "* Lip (X) =y p - (12)

This function y is called an Associated Laguerre Function.
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4.4 Integral representation of Laguerre Polynomials:

Let us assume the integral

Lep™ on L S Y
= — ¢ ——e™ dp suchthat y,/'= —¢————e P (
AR AP P T mYaZ ) P
1 p—n +1 ~
andy,’ = —¢————e* 1P dp el (13)
YR TRSE o
Laguerre’s polynomial is the solution of the differential equation
Xy +(1=X)y +ny =0 woeeeeeee (14)
If we substitute in this equation the values of y,, y, and y,”’ as given by equation (13), then we
have
2 -n-1
L XIO _ (1 B X)p +n /0 e-x p(-p) dp
247 (1-p)° l-p l-p

for the left hand side of equation (14). It may also be written as
N S R e

2mddp|1-p

Which is equal to zero since quantity in the bracket takes same values at the initial and final
points of the closed contour.

Lep™t

- e™”""") dp | and hence this value of y
2mY 1-p

So L.H.S. of equation (14) is zero if y =

represents a solution of the Laguerre’s equation and hence we may have

Ly (%) = cyn, (%),

Where c is a constant. If, we substitute x = 0 in equation (6), then, we have
L,(0)=n! --eme- (15)

p -n-1

I-p

1
Substituting x = 0 in the first equation of (13), we get y, (0) = 2— it; dp
m

p—n—l
I-p

But the integral iﬁ dp may be calculated to be 2 by the method of contour integration

where the contour includes origin. In this way, we get

Ya(0)=0  weoeeoees (16)
By comparing equations (15) and (16), we getc=n! or L,(0)=n!y, (0).
So L,=n!y,
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1 cp i
But Vo= — Pr__ g ri=r) dp
2mY 1-p
n! pin_l x p(1-p)
Thus L,= —¢—¢e7"""?dp oo (17)
2mY 1-p
But y, given by the first of equation (13) when calculated by contour integration is found
equal to the coefficient of p" in the expression (1 — p) ‘e /P,
. 1. : o
Actually, y, should be the coefficient of —or p~ in the Laurent equation of 1 e’ 1e.,
-p

the coefficient of p" in the expansion of (1 —p)'e'” .

>
€

© 0 L
So, we have (1 -p)'e'” = ngz;o yapi= ¥ (x) o

=0 n!

(18)

This is generating function for Laguerre’s polynomial.

4.5 Recurrence formulae for Laguerre Polynomials:

(1) L, is solution of equation xy"" + (1 —x) y' + ny =0

So, we have xL,”"+(1-x)L,+nL,=0  -----m-- (19)
(ii) Differentiating equation (18) with respect to p, we have
1 —X- p e—xp/(l-p) ;; Ln (X)pn_l — ;: L}, (X)p}w1
(1- p)° =l (n-1)! = (A-1)!
-xp/(1-p) o 1, A-1
or (1-x-p) S =y g NP
(1-p) = (A-D!

o 1, A o I, -l

o (l-x-p 3z 22®P 1, y Li®p”

o (A-1)!

A=1

(A-1)!

Equating the coefficients of p" on both the sides of this equation, we have

L 2L

n-1 n+l n

L. L

(1-%)

nl M- nl (@-D)! (@-2)!

or(1+2n—x)L,—n’L, ; — Ly =0 -

(ii1) Differential generating function equation (18) w.r.t. x, we have

0 LV
(—p)y L g s . (X) o
l-p =0 n!
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— —X — z L'n (X n
or —p(1-p) & 10 = (1-p) £ Lo,
=0 n!
L.(x) . LX)
or —Zp———p =Pz ———p
n =0 !

Equating the coefficients of p" on both the sides of this equation, we get

L.x)_ L' L., &
m-)!  n!  (@-1)!

L/(x)=nL, (X)—nLy (X) -----m--mm- (21)

4.6 Differential Formula for Laguerre’s polynomial (Rodrigue Formula):

Differentiating generating function equation (18) n times w.r.t. p, we have

¢ 0 - [(1 - p)_le'X/“'p)] e TG R DTG s K U — (22)
op
since all terms up to the term containing p" ' vanish when differentiated n times.
But i [(1 . p)—le-x/(l—p)] _ 1-x ',30 o x/(1-p)
op (1-p)
Lim
So i [(1 - p)_le‘xm'p)] =(1-x)e*= i (xe™).
p—>00p dx
82 B , d2
Similarly, 1- et | = —_(x%e™ and so on.
y %O@fk p) J= ey
0" d"
Thus finally, we have 1-p) e |[= — (x"e*
y ﬁoafk p) J= e

And hence equation (22) for p — 0 gives

n
dx"

Which is Rodrigue’s representation of Laguerre’s polynomial.

Ly(x) = ¢¥ —— (X&) wrreeeeees (23)

The Rodrigue’s; representation of associated Laguerre’s polynomial is given by
dl’l
dx"

4.7 Orthogonality of Laguerre Polynomials:

Ll; (X) _ ex ka n+k)

(e™x

Laguerre’s differential equation is not self — adjoint and thus Laguerre’s polynomials L,(x) do not

by themselves form an orthogonal set.
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However, the related set of functions
1
$n(%) = — e Ly(x) -oeeoeeees (25)
n!

where e ™ is the weight function of L,(x) is orthogonal for the interval 0 < x < oo, i.e.,

© L L 0

j e Ln®) Lo j Oen(X) Ba(X) AX = By <mmemmemee (26)
: m! n! 0

It can be proved as follows:

n

We know that L,(x) = ¢*

(x" ™). Multiplying both sides with ™ x ™ and integrating w.r.t.

n

x between the limits 0 to oo, we get

n

® x.m e m d n _—x
.[o e X Ln(x)dx—j0 X i (x" e™)dx

n

m dn-l n_-x ) 0 m-— dn-l n _—X OO m-— dn-l n —X
=|:X —X e } _Io mx™ ! x"e )dx=(—1)mJ.0 X 1—_1(x e )dx
0

dx dx""! dx"
o dn—2
—(_1)2 _ m-2 n __-x —
= (=1)* m(m — 1) jo X (e
=(-1)".m! Jm (x" e M)dx (on integrating by parts)
o dx" ™
=0ifn>m.
similarly, J' : e X "Lyx)dx=0ifm>n.

But L,(x) is a polynomial of degree n in x and L,,(x) is a polynomial of degree m in x.

Therefore, jw ¢ Lin(X) Ly(x) dx =0 for m > n and form <n

e L L

Or J. e ﬂ&dx=0ifm;t0. —————————— 27
- m! n!

For m =n, J.io e {Ly(x)} dx = (-1)" J.io e x " Ly(x) dx

(since the term of degree n in L,(x) is(—1)"x").

n

© x n® —x_n _x d n X
Thus jo e {Ly(x)}% dx = (=1) jo e G

Xn

—(=1)"n! j: x" (=1 e*dx =n! j: X e X dx=(n!)? e (28)
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1 -x/2

) _ e
or J — e Ly(x).
° n! n!

L(x)dx=1

Thus from equations (27) and (28), we get

J.OO e—x/Z Lm (X) e—x/Z Ln (X)

dx =0m n
0 m! n!

[ 0000 a0 dx =8

L, L,

Second method: To prove that I N e . dx =084
© |m [n
» t"L (x |
Proof: We have X () = elt
=0 |n 1-t
o L (x 1 =
and X s™ n (%) = els
m=0 | m 1-s
Further,
® L x) L (x | S I
z e—xtnsm n( ) m( ) :e—x el_t -el_s
m,n=0 |_n |£1 1-t 1-s

Integrating both sides w.r.t. x between the limits 0 to oo, we can have a typical integral

[ b L6

dx = coefficient of t" s™ in the expansion of

" n |m
-tx -SX
J. e"‘;e“ e’ Ldx
0 (1-t)(1-s)
-tx -SX s
S P N S B (55
0 (1-t)(1-s) (1-t)(1-s) J0

_ 1 : . |:e'x[l+1—tt+l—ss}:|

s =0

(1—t)(1-s)[1+ _t+1_J -
1

1
= 0—1)=——=[1+ts+(ts)>+.......
—1+ts( ) 1+ts [ (ts) ]

Here the coefficient of t" s™ is zero (m # n) and 1 for m = n.
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Jeh® L

. 8mn
0 [n | m

4.8 Examples:

1. Show that the generating function

1 X © tn
et =X — Lx).
n=0 | n

1-t

Solution: We have

r=0 |r (1 _t)H'] r=0 |_r
=3 (1) Xt 1+(r+1)t+—(r+1)(r+2)t2+
r=0 |_r |_2
n n-1 n-
coefficient of t" = D) x" + (-1) nx™ + -1
|_Il In-1 n-
n 2 2
= (-1) x" —1’12 i I (Il-l) X“'2 ......
|n 12
L, () :
= | as per equation (6)
n
S eE = %O: L.(x).
— Z, T L

2.Provethatx L', =nL,—n*L,

Solution: We know the recurrence relations
(1+2n—x)Ly—n’Ly —Lyy =0 —oeeemeeee
andL', =nL',_;—nL,,
Differentiating (20) w.r.t. x, we get

(1+2n-x)L',—-L,—n’L', ;— L'y =0
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or (1+2n-x)Ly-L,—n’L’,—(n+ 1)L, + (n+1)L, =0 from (21)
(ie)(n-x)L',—n’L’, ,+nL,=0

or m-x)Ly—n(l'y,+nL, )+nL,=0 from (21)

(ie) xLy=nL,—-n’L,

n-1 L
3. Show that L',(x)= —|n % (%)

|t

© n 1 X
Solution: We know that X L'\(x)= elt
n=0 | n 1-t

Differentiating w.r.t. X,

© n X
A D, . .(—1 el
= -t " lI-t

=—t(l-t)" P |tT L(x).

=—t(l+t+t+...)2
r=0 |r

L.(x).

or equating the coefficient of t" on both sides,

L L’n(X):— 1. Ln—l(X) _l.Ln-Z(X) _
[n In-1 In-2 |0

Y L®
r=0 |r

i) L) = —|n 5 )
— =0 |r

4. If a function f(x) defined in (0, o) is expressed as f(x) = Cyp Lo(x) + C; L1(x) + C; Ly(x) + ......
then show that

].ie"‘Lk (x)f(x) dx
Ck =2

o0

[er[L oF dx

0
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N

Solution: Multiply f(x) Cy Lo(x) + C; Li(x) + C; Ly(x) + ...... with €™ Li(x) and integrate

w.r.t. X, between the limits 0 to c, we get

j: e Li(x) f(x)dx = C, j: e Li(x) Lo(x) dx + C, J' : e Li(x) Li(x) dx + ....

+C : ™ Li(x) Li(X) dX + ...
By the orthogonal property of Laguerre polynomial that
J.: e Lin(x) Lu(x) dx = Cy J-: e [Lk(x)]2 dx
[ L, (0fx) dx
or Cc=2

o0

[er[L 0F dx

0

5. Find the value of L,(x) and evaluate .[ : e Ly(x) x" dx where m is a +ve integer.

Solution: We know the Laguerre polynomial of degree n as

2 2 2
La(x) = (—1){x" —T—lk““ +n(|nT'1)x"'2 tot (<D0

212
= Ly(x) = (1) {xz _ax 4 2] }

=x>—4x +2.

Now I: e Lyx) x"dx = J.: e (x* —4x +2)x"dx

© X omt2 © - +1 © -
Joe X dx—4J‘ e x™ .dx+2.[ e x"dx.
0 0

Jm+3 —4ym+2 +24m+1

4.9 Summary:

Similar to the previous lessons, the structure of this lesson is also the same and it started with
the second order Laguerre differential equation. Having obtained the solution, one finds that
choice of the arbitrary constant a, is of two ways. So while dealing with these polynomials

caution should be exercised in asking and answering generations. No doubt, associated Laguerre
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polynomials are more useful. However, due to their unwieldy nature, they are only introduced
and stress is given to Laguerre polynomials.

Integral and differential representations of Laguerre polynomials are given. Using the
generating function, recurrence relations have been proved. Orthonormalization property, using

weight function, is proved. Typical examples are worked out and probable questions are given.

4.10 Key Terminology:

Laguerre differential equation — Associated Laguerre polynomials — Generating function —

Rodrigue’s Formula — Integral representations — Weight functions — Recurrence relations.

4.11 Self — assessment questions:

1 Obtain the generating function of Laguerre Polynomial from its integral representation.
2 State and prove the Orthonormalization property of Laguerre Polynomials.
Or

Show that ¢,(x) = ¢ ™ L,(x) from an orthonormal set.
3. If Ly(x) is the Laguerre Polynomial of order n show that L,(x) = ¢e* %
4. Prove the recurrence relation for Laguerre Polynomial

(1+2n-x)Ly(x)—n’L,_1(x) — L, 1(x) =0
5. Show that L7 (x) is a solution of xy"" + (m + 1 —x) y’ + (n —m) y = 0 when

m is an integer m > 0

6. Find the expression of L4(x) and show that L24 (X) =144 —96x + 12x°.

4.12 Reference Books:
1. B.S. Rajput ‘Mathematical Physics’ Pragati Prakashan, Meerut,1999.
2. H. Margenau and G.M. Murphy ‘The Mathematics of Physics and Chemistry’ Affiliated
East — West Press Pvt. Ltd., 1971.
3. P.P. Gupta, R.P.S. Yadav and G.S. Malik, ‘Mathematical Physics’, Kedarnath Ramnath,
Meerut, 1980.
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Unit - 11
Lesson —5

ANALYTIC FUNCTIONS

Objectives:

» To introduce the basic concepts of complex numbers and functions.

Y V V V

Structure:

5.1 Introduction

5.2 Basic concepts

5.3 Definitions

5.3.1 Neighborhood of a point
5.3.2 Limit

5.3.3 Continuity

5.3.4 Derivatives

5.3.5 Analytic functions

5.3.6 Singular points

5.4 Cauchy — Riemann equations
5.5 Harmonic functions

5.6 Examples

5.7 Summary

5.8 Key Terminology

5.8 Self — assessment questions

5.10 Reference Books

5.1 Introduction:

Many scientific problems may be treated and solved by methods of complex analysis. These problems
can be subdivided into two large classes. The first class consists of elementary problems dealing with
electric circuits, vibrating systems etc., for which the knowledge of complex numbers gained in college

Algebra and calculus is sufficient. The second class of problems such as theory of heat, fluid dynamics

To give the definitions of basic parameters and terminology in the complex region.
To understand the concept of many-valued and single valued functions.
To give the definition of analytic functions and to derive Cauchy — Riemann equations.

To bring the relation between analytic functions and harmonic functions.

etc., requires a detailed knowledge of the theory of complex analytic functions.
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It will be seen that the real and imaginary parts of an analytic function are solutions of Laplace’s
equation in two independent variables. Consequently, two dimensional problems can be treated by
methods developed in connection with analytic functions. There is, however, large area of applications in
scientific problems in which familiarity with the theory of complex functions beyond this minimum is

indispensable.

5.2 Basic concepts:

We consider a complex number as having the form a + ib where a and b are real numbers and i, which
is called the imaginary number, has the property that i* =— 1. If z=a + ib, then a is called the real part of
z and b is called the imaginary part of z and are denoted by Re (z) and

Im (z) respectively. The symbol z stands for complex variable. The complex conjugate or simply

conjugate of z often denoted by Z or z is given by a — ib. The absolute value or modulus of a complex

number or briefly mod z or |z is given by |z| = |a+ ib| = va’ +b*> =|Z |. FurtherzZ = (\/a2 +b’ )2 =
|z|* which is an important property.

Since a complex number x + iy can be considered as an ordered pair of real numbers (X, y), we can
represent complex numbers by means of the representative points (x, y) in two dimensional xy — plane

called Argand plane in which x — axis is taken as real axis and y — axis as imaginary axis as shown in the

figure 1.
Imaginary axis
P (x,y)
=
y
0
0) X H

X
Real axis
Fig 1: Argand diagram.

Further if (r, 0) are the polar coordinates, then x = r cosf and y = r sinf. So the complex number can
also be represented as z =x + iy =r cos® + i r sin® = r (cos® + i sin0) = re'’ by Euler’s formula.
Consider z; = x; +1y; =1y (cosO + 1 sinf) =1, !
where 1, =| z| = 1/X12 + yl2 and 0, = amp z, = tan”' N is called the amplitude of z; or argument of z,

X1

(arg zy).

Similarly consider z, =x; iy, =1, ¢ , Then
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i01762) 1 which

Z1 2y =T 1€
|z1 22| =111,=| 2] |22 | and
amp (z;, zz) = amp z; + amp 2,.
(i.e) modulus of a product of complex numbers is equal to product of the moduli of the individual
complex numbers. And amplitude of the product of complex numbers is the sum of the amplitudes of
individual complex numbers.

A number o is called as nth root of a complex number z if we write
SH+2k7z +isin9+2k7r

n n

mzzl/n:rl/n [CO

In particular, ifz=1 = 1.¢", then

n (21{7[ . Zkﬁj
o=1"=cos +1SIn——
n n

27. 4r.
i

=1, en ,e7 yeennens are the nth roots of unity.

In w = f(z), if to each value of z, there corresponds only one value to w, then w is called a single

valued function of z

Example: If w =2’ then for a single value z = 4 there corresponds one value to w as 4” = 16.

1
So w = 7z’ is single valued. On the other hand if w =z2, then for a single value of z = 4, there

corresponds two values to w as + 2 and —2. Thus its is a double valued or generally called as many

valued function.

Q: Show that the modulus of the sum of two complex numbers does never exceed the sum of their

moduli.

Solution: Let z; and z, be the two complex numbers and their conjugates are z, and z,
Now | z; + 2, \2=(zl +2) (Zl +22)=(zl +2z5) (Zl +22) (‘.'22=ZZ)
:lel +Z222 +2122 +Z221
2 2 — -
=|z,| "+ |z,| vz Z,+ 2,7,
2 2 —
= |zl| + |zz| +2Re(z12,)

<lz.["+]z| +2127,| (" Re (z) < |2)
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2 2 —
or <z +z,| +2]zzl (21Z,y =12l ) or |z +

P <(lzi| +|zf )

(e lzitz|<(|zi| +]z|) ---o--mv (1)

Q: The modulus of difference of two complex numbers is greater than or equal to the difference of their
moduli.

Solution: Let z, and z, be the two complex numbers and their conjugates are z, and Z,. Then

21— P=(21-2) (z, —z2)=(z1 -2)(z,-2,)
=|z,|"+ |z,| ~2Re(z: Z,)
>z, + |z, 21 21 Z, | (" Re () <2)
and —Re(z)>-|7]
>z + 2| 212zl (1Zy]=2l)

or{zi-z[2(|z] - |z]) ----mmmmm- 2

Note: The inequalities (1) and (2) are important in future lessons on complex variables.

In coordinate geometry, the equation of a circle with origin as center and radius r is given by x* + y* =
. . . 2 .
r’. This can be represented in complex variables as |z| =1’ or simply | z =r. Thus

| z| = 1 represents the equation of a unit circle with origin as centre. Generalizing this concept,
|z - a| =1 is the equation of circle with r units radius and centre at o (complex).

Some noteworthy points in understanding the circles are as follows.

|z-a|=r : All the points on the circumference of the circle.

|z-a]<r : All the points inside the circle.

|z-a]<r : All the points within and on the circumference of the circle.
|z-a|>r : All the points outside the circle.

5.3 Definitions:
5.3.1 Neighborhood of point:

It is the set of all points z such that |z — zg| < € where € is an arbitrarily chosen small positive number.

i.e., all points interior to |z — zo| = € are called the neighborhood of z,.
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5.3.2 Limit:
Let f(z) be defined and single - valued. Let f(z) = u(x,y) + iv(x,y). We say that the number A is limit of

f(z) as z approaches zy and write Lt f(z) = A if for any arbitrary small positive number €, we can find
77,

some positive number  such that |f(z)-A| < € for all values in |z — zo| < 9.

This means that the values of f(z) are as close as desired to A for all z which are sufficiently close to zy

as shown in figure 2.

y A

O X

Fig 2: Limit. Dotted line shows the correspondence between z
approaching z, and f(z) approaching A

Note: The definition of a limit implies that in whatever manner z may approach z,, the limit must be

uniquely A. Since z is a function of x and y (two dimension), z may approach z, along any

radius vector or any curve. Recalling our concept of a limit in one dimension, Lt f(x) =k, it means that
X—a

the limit from the left and the limit from the right should be equal for the uniqueness of the value k and

there are no other paths.

5.3.3 Continuity:

A single valued function f(z) is continuous at the point z,, if for a given arbitrarily small positive
number €, there exists a number 6 such that | f(z) — f(zy) | < € for all z satisfying |z—2zo| < & where &
depends on €.

This means that f(z) is continuous at zy if Lt f(z) uniquely exists in whatever manner z approaches z,
727,

and that value is the value of the function at z,.  Or Lt f(z) = f(z).
77,

5.3.4 Derivatives:

If f(z) is single valued in some region of the z —plane, the derivative of f(z) is defined as
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Fi(2)= Lt f(z+ Az)-1(z) 3)

AZ—0 Az

provided that the limit exists in whatever manner Az approaches zero. In such case we say that f(z) is

differentiable at z.

5.3.5 Analytic functions:

A function f(z) which is single valued and differentiable at every point of a region, is said to be

analytic in the region. The terms regular and holomorphic are sometimes used as synonyms for analytic.

1.3.6 Singular points:

A point at which f(z) fails to be analytic is called a singular point or singularity of f(z). We consider
various types of singularities that exist at a latter stage.
Note: The practical approach in finding out the singular point is to find out the point where the given

function becomes infinite.

5.4 Cauchy — Riemann equations:

Q: A necessary condition that w = f(z) = u (X, y) + iv (X, y) be analytic in a region R is that u and v
satisfy the Cauchy — Riemann equation
ou ov ou ov

—=—uand — = ——— - 4
ox 0Oy oy ox

or Uy = vyand uy = - v

In addition to the existence of the partial derivatives in (4), if they are also continuous, then the Cauchy —

Riemann equations are sufficient conditions for f(Z) to be analytic in R.

Solution:

Necessary:
Iff(z) =u (x, y) +iv (X, y) is to be analytic, the limit
Lt f(z + Az) -f(z)

AZ—0 Az

=f'(2)

- Lt [u(x + AX, y + Ay) +iv(x + AX, y + Ay)] - [u(x, y) + iv(X, y)]
Ax—0 AX +1 Ay

Ay—0

must exist in whatever manner Az or (Ax and Ay) tends to zero. Let us consider two simple approaches
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Case 1: In Az = Ax + i Ay approaching zero let us consider that Ay = 0 which means that Az = Ax (purely

real). So Az tending to zero means it approaches zero along the real axis. In such a case, (5) becomes

boe 1 [HEE AR U0 Y) |V AR )~ Vi)
Ax—0 AX Ax
N 6)

provided the partial derivative exist.

Case 2: If Ax =0 and Ay—0, then Az = Ay (purely imaginary) tends to zero. So (5) becomes

f')= Lt u(x, y +Ay)—u(x,y) | v,y +Ay) - v(x,y)
iAy Ay

Ay—0

Now f(z) cannot be analytic unless these two limits as in (6) and (7) must be identical. So the necessary
condition that f(z) be analytic is
utive=—iuy+vy
Or uw=vy; vw=—iuy - ®
Sufficient:

Apart from the existence of the partial derivatives in (8), since uy and u, are supposed continuous, we
have
Au=ux+Ax,y +Ay)—u (X, y)

= {ux +Ax,y t Ay) —u (x, y TAy)} + {u (X, y tAy) - u (x, y)}

= (Ut €1) AX + (uy + 1) Ay by mean value theorem

= U AX +uy Ay + €,Ax + 1Ay

where €;and n, tend to zero as Ax—0 and Ay—0
Again, considering that v and vy are supposed continuous, we get a similar expression for Av as
Av = v,AX + vyAy + e,AX + p Ay where €, 1, tend to zero as Ax and Ay tend to zero.
Then Aw = Au +1 Av

=(Ux 1V AX + (uy +1vy) Ay + eAx + NAy  -----—---- ©)

Where € = €, +1 €,—0 and n =mn; +1i1; >0 as Ax—0 and Ay—0.
If Aw = f(z) satisfies Cauchy — Riemann equations then we have to prove that unique derivative of f(z)
exists.

By Cauchy — Riemann equations, (9) takes the form
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Aw = (ux +1vx) AX + (-vx +1Uy) Ay + €AX + Ay
= (ux +1vy) (AX +1Ay) + €Ax + nAy
Dividing with Az = Ax + 1 Ay and taking the limit as Az —0, we see that

A
W= Lt AY iy e (10)
dz AZ—0 Az

so that the derivative exists and unique. That is f(z) is analytic.

5.5 Harmonic functions:

If a function having continuous second order partial derivatives satisfies Laplace’s equation, then that

function is called harmonic function.

Every analytic function f(z) satisfies Cauchy — Riemann equations

du dv du dv
e ®)

dx dy dy dx

Differentiating the first equation of (8) partially w.r.t. x and the second equation w.r.t y and adding, we

get
0’ 0’
S+ =0 (11)
ox oy
Similarly, differentiating first equation of (8) partially w.r.t. y and the second w.r.t. x and subtracting, we
get
2 2
OV L OV (12)
O0x oy

Thus in the analytic function
f(z) =u(x, y) +1v(x,y)
u and v satisfy Laplace equation and hence they are called harmonic functions. Further, two harmonic

functions u and v are such that u + iv is an analytic function, then they are called conjugate harmonic

functions. (This ‘conjugate’ term should not be confused with the complex conjugate of a complex

number)

5.6 Examples:
(1) Show that f(z) = Z is nowhere analytic

Solution: If f(z)= Z =x—iy, then

fz+AzZ)= Z + Az = (x —iy) + (Ax — iAy)
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~dZ:Lt M:Lt

dz Ax -iAy
dz 420 Az PR AX +iAy

Let Ax and Ay approach along the radius vector
y =mx. Then

dz AX -1m AX l-im
= —— = Lt

dz &0 AX+1mAX &0 ]1+1m

l-im , . : . : . dz :
= Toim This value is not unique since m is an arbitrary constant. So d_ does not exist.
+1m z

Hence it is nowhere analytic.

(2) Prove that the function u + iv = f(z) where
x> (1+i)-y’(1-1)

f(Z): X2 + y2
0 (z=0)

(z#0)

Is continuous and that the Cauchy — Riemann equation are satisfied at the origin’

Yet f'(0) = does not exist.

X (1+i) -y (1-i)

Solution: f(z) = D >
X +y
3 .3 3 3
X - X0+ .
=— y2 Ti— y2 from which
X +y X +y
33 3 3
X’ - X7 +
u=2—yzandv=z—yz WhenZ?ﬁO.
X +y X +y

Both u and v are rational and finite for all values of z # 0. Hence f(z) is continuous for all z # 0.

Now at z =0, both u and v are zero. So they are continuous at the origin.

We know that
@ = Lt u(x + ha Y) B u(X: Y)
Ox h—0 h
( ou ) _, uh,0)-u(0,0)
0Xx Jx=0 h—0 h
= tﬂ=l ("ratz=0, f(0)=0)
h-0 h

Similarly, it is seen that
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ou h-0
- =Lt —— =—
ay x=0 h—0 h

y=0
(@j = Lt h-0 =1
OX )x=0 h—0 h

y=
ov h-0
— =Lt —=1
ay x=0 h—0 h

y=0

Thus at the origin ux =vy and u, = —vy (i.e) Cauchy — Riemann equation are satisfied. But the derivative at

the origin is

10y = ZI;tof(z)z-_féO)
_ X3_y3 X3+y3
o0 (XY )(x+iy) Xy )(x+iy)

Since both numerator and denominator are homogeneous expressions of the same order, let x and y

approach zero along any radius vector (i.e.) y = mx. Then

3 3
£/(0) = Lt 12m. +i lfm.
x>0 (1+m*)(1+1im) (I+m”)(1+1m)

which is independent of x. Further, since m is arbitrary, f'(0) is not unique and f(z) is

continuous everywhere.

(3) Show that f(z) = /| Xy | is not analytic at the origin although Cauchy — Riemann equations are
satisfied at that point.

Solution: Given that f(z) = /| Xy |. Since [xy| is always a positive quantity, f(z) = /| Xy | is always

real. Sou(x,y)= /| xy|;Vv(x,y)=0.

Now (2] - g ME0U00) 00

OX )x=0 h—0 h h—0
y=0
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ou ov
Similarly —, — and — are zeros. So Cauchy — Riemann equation are satisfied at the origin.
X
f(z)-f(0 X
Now £/(0) = Lt 1@-f0) Vx|
250 7-0 ;38 X+1y

Since the numerator and denominator are homogeneous expressions of the same order, consider the
radius vector y = mx along which x and y approach zero. Then

£'0) = Lt XJim[ _ yJIm]

- - which gives different values for different values of the arbitrary
x>0 x(1+im) (1+im)

constant m. Hence f'(0) is not unique or the derivative does not exist or f(z) is not analytic at the origin.

(4) Show that w = x> — y* +2 i xy is everywhere analytic in the entire complex plane and express the
derivative of w w.r.t z as a function of z alone.

Solution: Given that w = (x* —y?) +2ixy in whichu=x*—y*and v=2xy
Uy =2X, Uy = - 2y; Ve =2y, vy =2X

(i.e.) Cauchy — Riemann equations are identically satisfied in the complex plane. More over the

. o . . dw .
first order partial derivatives are everywhere continuous. So the derivative —— should exist

dz
according to the sufficient condition for the analytic functions and it is given by
dw
— = Uy HiVy e (10)
dz

=2x + 21y =2(x + iy) = 2z.

(5) In any analytic function w = u(x, y) + iv(x, y), if x and y are replaced by their equivalents,
Z+7Z zZ—2Z

andy = —

2 21

then w will appear as a function of z alone

X =

Solution: Although z and Z are clearly dependent, w can be formally considered as a function two new

independent variables z and Z. Then, if w has to appear as a function of z only, we have to prove that

ow
— is identically zero.
0z

Now
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ow _O(u+iv) du . 0v

0z 0z 0z 0z
_(Quox  oudy|, .fovox  OvOy
0x 0z 0Oy 0z 0x 0z 0Oy oz
But from the expression of x and y in terms of zand Z,
x_1 . oy _ 1_i
z 2 ooz 2 2
So

(" w=u+iv is given as analytic and so u and v satisfy Cauchy —Riemann equation)

(i.e.) w is a function of z alone.

(6) Find v of the analytic function f(z) =u +iv if u=¢e ™ (x siny —y cos y). Express f(z) as a
function of z.
Solution: Since f(z) is analytic, it should satisfy Cauchy — Riemann equations. So
Vy=uy=e siny—Xxe siny+tye cosy ---------- (13)
Vx=-Uy=¢€ COSy—Xe€ COSy—ye siny ---------- (14)
Integrating (13) partially w.r.t y, we get
v=-eg cosyt+txecosy+e(ysiny+cosy)t G(x)
=yesiny+xe cosy+tG(x) ---------- (15)

where G(x) is an arbitrary real function of x.

substituting (15) in (14), we get

—yesiny—-xe cosy+e cosy+G'(X)
=-—yesiny—xe cosy—ye siny

or G'x)=0 ie., G(x)=k (aconstant)

So (15) givesv=ye siny+xe cosy+k - (16)

SAf(z)=u+iv
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2i 2
=i(x+iy)e ¥V +ik=ize*+ik

Some more methods of finding f(z) as a function of z:

Method 1:

We have f(z) = f(x +iy) = u(x, y) + iv(X, y)
Putting y =0, f(x) =u(x, 0) +iv (x, 0)
Replacing x by z, f(z) =u(z, 0) +iv(z, 0)

In the given problem u(z, 0) =0, v(z, 0) =z ¢™

~f(z)=ize” apart from an additive constant.

Method 2:

0 ou
Let us put 6_u =u(x,y) and — =uy(x, y). From the sufficient condition of the analytic function f(z), it
X

is seen that f'(z) = ;ﬂx + i% —————————— (10)
_ou_du
ox 0y
or f'x+iy)=u(x,y) —1uw(x,y)
Putting y =0, f'(x) =uy(x, 0) — 1 uy(x, 0)
Replacing x by z, f'(z) =u(z, 0) —iuy(z, 0)
Or f'(z)=0-i(ze*-e9)=-i(ze“-¢e¢“) from(13)and (14)

Integrating w.r.t. z, f(z) =i z ¢ apart from the integrating constant.
By separating this into real and imaginary parts, we get v=¢ " (y siny + x cos y) apart from a constant.

Note: This is a method for obtaining f(z) without finding the conjugate function.

Method 3:

After finding v(x, y) and substituting x = z in f(z) = u(x, y) + iv (X, y) one can find f(z)

as a function of z alone after a tedious procedure.
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(7) If u and v are conjugate harmonic functions, show that v and — u as well as —v and u are also
conjugate harmonic functions, but that v and u are not.
Solution: Here we have to consider these conjugate functions as real and imaginary parts in their order
for the complex function.
Given that f(z) = u + iv is an analytic function
LU=V
u = Vx} Cauchy — Riemann equation.
Then v —iu is analytic if vy = - uy and vy = u,
Similarly —v + iu is analytic if —v, = uy and —v, = -uy
Which are true from the above Cauchy — Riemann equation.

However v + iu is not analytic as v, = u, and vy, = -uy are not the same as the Cauchy — Riemann

equations.

(8) If ® =u(x, y) +iv(x, y) is an analytic function of z, then the curves of the family ux,y)=c
are the orthogonal trajectories of the curves of the family v(x, y) =k and vice versa.
Solution: Since u(x,y)=c
ou

o dx+@dy:0
ox oy

A
= X =4 7 (due to Cauchy — Riemann equation.)

u, A

or

&l&
[

Again with the trajectories v(x, y) = k, we get
dy _ v,
dx \S

If the two trajectories are orthogonal, the product of the two slopes must be equal to —1. Thus, from the

. . vy v,
slopes obtained, it is seen that | — | x | — =-1

v, v,

Hence the result.

5.7 Summary:

This lesson, starting with an introduction, projects the rudiments of complex numbers and functions.
Then the basic definitions of certain parameters already familiar in real analysis are given with respect to

complex region. Uniqueness of the limit is highlighted which can be appreciated while dealing with the
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derivation of Cauchy — Riemann conditions. The equation of circle and inequalities in the complex plane,
play important role in future theorems and problems.

The definition of an analytic function is given and the necessary and sufficient conditions for a
function to be analytic are derived. The real and imaginary parts of every analytic function are seen to be
harmonic functions (conjugates) satisfying Laplace equation.

Typical and assorted problems have been worked and questions given at the end of the lesson.

5.8 Kev Terminology:

Argand diagram — mod.z — amp.z — polar form — single valued function — neighborhood — limit —
continuity — differentiability — Analytic functions — Cauchy — Riemann equations — Harmonic

functions.

5.9 Self — assessment questions:

1. Iff(z) =u + iv is an analytic function where u*+v” is a constant, show that f(z) is a constant.
2. Show that u =x’ — 3xy” + 3x” — 3y” + 1 is a harmonic function. Find its harmonic conjugate of
the analytic function f(z) = u+iv and determine f(z) as a function of z.
3. Show that w =z Z is everywhere continuous and it is nowhere analytic except at the origin.
4. Ifz=re", show that the Cauchy — Riemann equations take the form
1

u,= —vgand v, = —— Uy
r r

5. Iff(z) and f(z) are both analytic functions show that f(z) is a constant.

6. Iff(z) =u+iv is an analytic function where v = amp.z, show that v is a harmonic function and
find f(2) .

7. In the analytic function f(z) =u +iv,u= In(x* + yz) obtain f(z) as a function of z without finding
the harmonic conjugate of u.

8. Determine the analytic function f(z) = u + iv when u + v = x* — y* + 2xy.

5.10 Reference Books:
1. M.R. Spiegel ‘Complex variables’, McGraw — Hill Book co., 1964.

2. E. Kreyszig ‘Advanced engineering mathematics’, Wiley Eastern Pvt., Ltd., 1971.
3. B.D. Gupta ‘Mathematical Physics’, Vikas publishing House, Sahibabad, 1980.
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Unit -1l

Lesson - 6

COMPLEX INTEGRATION

Objective of the lesson :

*

*

*

To give the definition of integration in complex variables

To evaluate certain basic integrals from the definition of integral

To explain the important concepts of simply and multiply connected region.

To prove Cauchy's theorem on analytic function.

To derive Cauchy's integral formula both on simply and multiply connected region.
To prove derivatives theorem on analytic function

To prove the converse of Cauchy's theorem

Structure of the lesson :

6.1 Introduction

6.2 Some definitions

6.3 Complex line integrals

6.4 Concepts on basic integrals

6.5 Simply connected and multiply connected regions
6.6 Cauchy's theorem

6.7 Cauchy's integral formula

6.8 Cauchy's integral formula for multiply connected region
6.9 Derivatives theorem on analytic functions

6.10 Morera's Theorem

6.11 Examples

6.12 Summary of the Lesson

6.13 Key Terminology

6.14 Reference Books

6.15 Self Assessment Questions
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6.1 Introduction

The definition of an integral in complex variables runs on similar lines as in real analysis.
The importance is stressed in the evaluation of integrals around closed contours. Cauchy's theorem
is given to make certain integrals easy for evaluation. The values of the complex functions and their
derivatives at given points are expressed interms of the integrals containing those functions.
Examples for further understanding are given.

6.2 Some Definitions :

If a point on arc is such that z=¢(t)+iy (t) andif ¢ and v are real continuous functions of

the real variable 't' defined in the range o <t < 8, then the arc is called a continuous arc.

If z is satisfied by more than one value of tin the given range, then the point z is a multiple
point of the arc.

A continuous curve without multiple points or which does not interesect itself is called a
Jordan Curve.

A continuous Jordan curve made up of a finite number of regular arcs is called a contour.

6.3 Complex line integrals (Riemann's definition of integration) :

Let afunction f (z) of complex variable z be a continuous function defined along the curve

C with end points Aand Bas showninFig.1Let Z, =a, Z, Z,, ....... Z, =t be amode of subdivision
of the curve C.

Y

Fig. 1

Let n,, 1,,......n, be the set of points in the n subdivisions of the curve C such that , lies on

the arc Z, Z,, n, lieson Z,Z, and so on.
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n
Now form the sum le(zr ~Z,.1) () where Z, ,<n, <Z, .

When the number of subdivisions is made inifinite, then the limit of the sum, if exists uniquely

for any path whatsoever joining ato b, is called the integral of f (z) over C from ato b. Itis written
as

Lt Zn: (Zr _Zr—l) f (nr ) =

N—w -1

D —T

f(z)dz,

Note : When the integral is taken around a closed contour, the traversal along the closed path in
the counter clockwise direction is conventionally taken as positive direction.

6.4 Concepts on Basic Integrals :

Q. Evaluate

(J; 20z \yith the help of the definition where C is

(i) fromato b (ii) Closed
Solution : (i) By definition,

[f(2)dz= Lt 3(Z,-Z,,) f(n,)

C N—w -1

n
Here (J;ZdZ: Lt Z77r(zr_zr—l)

n—wyr-1

n, is any pointin the very small interval Z,_; to Z, when n— . In suchacase, n, canbe

taken as equal to Z, ; or Z, or any other point in between Z,_; and Z, .

Sowhen 1, =Z,_,;, the above integral reduces to

Similarly, when n, = Z_, then

i f (Z)dZ = nl:)thtlzr (Zr _Zr—l) ................. (2)

Now %[(1)+(2)] gives
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[f(2)dz=1 Lt 2[24(2,-2,4)+2.(2.-2,4)]

c 2n—>wr:1

2Lt 3 (z2-22)

N—o0 =1
=%.n550(z§ -23)
=%.(b2 - a®)because Z, = aand Z, = b

(i) If Cis a closed contour, the starting point Z = a coincides with the end point Z_ = b in

which case

$zdz=0

Q. Starting from definition evaluate [dz where C is (i) open (ii) closed.

Solu: (i) From the definition, we have

[f(z)dz= Lt S[f(1,)(Z ~Z )]

C n—wo r-

Here f(z)=1, So idz: Lt ¥1(Z,-2Z.,)

n—w -1

Lt [(Z,-2Z0)+ (2, - Zy) + oo +(Z,-2,4)]

n—w

or [dz=
C

= Lt(Z,-2)

n—o
=(b-a)= Chord ab --Z, =a, Z,=b
(ii). If the curve is closed so that Z, and Z, coincide, then §$dz=0
C

Q.If f (z) is integrable along a curve C having a finite length L and if there exists a positive number

<ML

[ f(z)dz

C

M such that |f (z)|£M on C, then

Solution : By definition,

[ f(2)dz=Lt 2] f(n)(Z -7 )]

C nN—oo -1
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>[f(n)(z-2)]

r=1

= Lt

n—oo

[ f(z)dz

C

< Lt 31 (n)|(Z - 2)|

nN—owyr_q

<M Lt 3|z,-Z, |
N—o 1
<ML (since |Z, —Z,_l‘ is the chord length same as arc

length as n is tending to « , the sum of these
arc lengths is the length of the curve (i.e.) L)

6.5 Simply and Multiply Connected Regions :

(i) Simply connected region :
A region R is called simply connected if every closed curve C in R can be continuously
shrunk to any point in R without leaving R as shown in Fig. 2.

Fig. 2.
OR

The interior of a closed curve which has no self-intersections is the simply connected

region.
The simply connected region has only one boundary i.e., The external boundary.

(if) Multiply connected Regions :

A region R which is not simply connected is called multiply connected region. A doubly
connected region has one external boundary and one internal boundary. A triply connected region
has two internal boundaries apart from one external boundary as shown in Fig. 3.
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C

(@) (b)
Fig. 3. (a) Doubly connected region (C-external, and C, - internal boundaries)

(b) Triply connected region (C-external and C, and C, being internal boundaries)

(iif) Change of multiply connected regions into simply connected regions :

A multiply connected region is converted into a simply connected region as shown in Fig. 4
by making cross cuts.

C

Fig. 4

A thin cross cut should be made from the outer boundary to the inner boundary in the
shortest length possible. As there are three boundaries in the multiply connected region (Fig. 3b),
the connected region with cross cuts in Fig. 4 has only one boundary and hence it is a simply
connected region.

Thus the theorems, which are true for simply connected regions are also true for multiply
connected regions as they can be converted into simply connected regions by making cross cuts.
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6.6 Cauchy's theorem (Cauchy's integral theorem) :

Theorem : If f (z) is an analytic function of zand if f ’(z) is continuous at each point within and on

a closed contour C, then (J: f(z)dz=0

oQ oP
Proof : We know the Green's theorem in a plane that if P(X, Y). Q(X, Y). X and a_y are all

continuous function of x and Y in the domain 'D', then

Q oP
({(PdX+Qdy)=JDI(§—E]dX dy o (1)

Let the given function be f(z) =u(x,y) +iv(x,y) where z=x+iy and dz = dx+idy

=] f(z)dz=[(u+iv) (dx+i dy)

C C

= [(udx — v dy)+i [(vdx +u dy)

=[](-v,-uy ) dxay +iff(u, - v, ) dxay by (1)

D

= 0 by Cauchy - Riemann equations since f (z) is analytic.

Note : (i) Without asuiming the continuity of f’(z) , the theorem can be proved. (i.e.) If f (z) is

analytic evrywhere within and on the boundary of the closed contour C, then (f: f (Z) dz=0 Thjs
theorem is named as Cauchy - Goursat Theorem whose proof is not necessary here. However, in
future, whenever f(z) is analytic everywhere in the region, we apply its implication that

[f(z)dz=0

@iy If f (z) is analytic in a region bounded by two simple closed curves C and C, (sense of

direction being positive) i.e., in a doubly connected region (Fig. 3a), even then the Cauchy's integral
theorem holds good. The argument runs as follows. The doubly converted region (Fig. 3a) can be
connected into a simply connected region as shown in Fig. 4 by making cross cut. In such a

region, the boundary being CL, C, L,, Cauchy's integral Theorem is applicable.

So[ﬁ +Lj - ¢ +Lj }f(z)dz=0

o)
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Since L, and L, are the same integrals with opposite sense of direction and hence J +LJ
1 2
iS zero.

The concept of (2) is important in future. In n-ply connected region, similar equation to (2)
can be written as

§f(z)dz=¢ f(2)dz+ ¢ f(2)dz+.... § f(z)dz
C C C, Cha
6.7 Cauchy's Integral formula :

Statement : If f (z) is analytic inside and on the boundary of 'C' of a simply connected
region and if 'a’ is any point interior to 'C', then

_1 .1
f(a)_Z_ﬂiiz—adz ............. (3)
y
C
c
X
Fig. 5

f(z
Proof : The function S a is everywhere analytic in C except at the singularity Z = a. If we remove

the singularity by encircling with C; :|Z—a| =¢ as shown in Fig. 5, then in the doubly connected

f(z
region between the closed curves 'C' and 'C, ', the function S_a is everywhere analytic. So,

according to Cauchy's integral theorem,
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N @, t@- @), @)
c Z—a o —a c Z—
=l + 1, (4)
f —f
il <[ F2 =@ [fE-f @),
a |z—a|
21nedod . )
<] e [‘-'Z—a=8€"9. dz=¢¢€’ido
0 &
|dZ =£do and f(z) is a continuous at z = a, and so
(i.e) < 27n [f(z)- f(a)|<n forall |z-a|<¢]
,L—0
f(a) 2t e % do
| dz=f _
2 c-[lz_a z ( )g geIB
= 27i f(a)
f(z .
~. (4) becomes ({ 2_2d2= 27i f(a).

Hence the result.

6.8 Cauchy's integral formula for multiply connected regions :

We consider a doubly connected region between the two closed curves C and C, as in

Fig. 3a in which f (z) is given to be analytic. Let a be the interior point of this doubly connected

f(z
region. Then the function S a has a singularity in the doubly connected region. If we eliminate this

singularity by encircling with T : |z—a| = ¢, then in the resulting triply connected region whose

f(z

boundaries are C,C, and T, S_a is everywhere analytic. By changing that region to simply
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connected region and using Cauchy's integral theorem we can write

f(2) dz - | f(2) dz=0
—a rZ—a

o
0
Q
|
H—
N

dz js already proved to be lie 27i f (a) .

.'.f(a)zziﬂi{j (2 g 12 dz:l

cZ—a q(z—a)

If this is extended to n-ply connected region then

6.9 Derivatives theorem on analytic functions :

Theorem : If f (z) is analytic and has, at any interior point a, derivatives of all orders, then

Proof : Let us first prove for first and second order derivatives and extend it to the nth order,
Now, we know that

(0 f(z)dz 5
f (a)_z—m(j:m (®)
£/(a) = u f (a+ht2— f(a)

1
—h|:f0 27 h ({( 7—a—h  z-a sz [applying Cauchy's integral formula

since 'a' and 'a+h' are interior points.]

1 1 h

27i h-0 (I;h f(z)(z—a)(z—a—h)dz

— 1 Lt f(Z) Z—-a

= 5 - dz
2ri h—>0c(z_a) z—a-h
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_ Lo @ .[1+ h }dz

B 27 h—0¢ (Z—a)2

ST f(z)2 dz+—— Lt hzf(z) dz ©)
27l hﬁoc(z—a) 27i haOC(Z_a) (z—a—h) .........
- hf(z)dz
et ¢(z-a) (z-a-h)

Since f(z) is analytic, itis bounded and | f (z)| <M,

z-a=¢€"?, |Z—a| =g, dz=¢€?.id0, |dZ| =¢gdb

1
|z-a-h[2|z-a|-|n or |z—a-h| = e —|h|

2t thMed@ |h|M.2x
TS <
0 & (8—|h|) 8(8—|h|)

So | -0 as h—0

, 1 f(z
- (6) becomes '(3)=7 -1 (Z_(a;2 dz )

Similarly the second order derivative of f (z) at z = a may be obtained as

f'(a+h) - f'(a)

f"(a)= Lt

h—0

1 1 1 1
= i ol [(Z—a— hye (Z_a)2] f(z) dz applying equation (7)

T | h[2(z-a)-h] f
27i h>0¢ N (z-a)* (z-a-h)’
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_ 1o (z-a)[2(z-a-h)+h]
2ri h—0 ¢ (Z—a)3 (Z—a—h)z

f(z)dz

1, 1 [(Z—a—h)+h}[2(z—a—h)+h]

-— . . f(z)dz
2ri h-0¢ (z—a) (z-a-h)
TP 2(z—a—h)2+3h(z;a—h)+h2 ( (2) d2
27t h-0¢ (z—a) (z-a-h)
1 2 1
- cj:(z—a)3 f(2) dz+ghl::to(j:f(z)hR(z) dz

Where R(z) is bounded on 'C', so that (J: f(z) hR(z) dz engs to zero as h—0.

) 2 . f(z
Thus | (a)=2%c(z_(a;3 dz o ®)

Similarly, assuming (5) to be valid for n = m, we can prove in a similar manner that it holds
good for n = m+1. Hence we have, in general,

6.10 Morera's Theorem (Converse of Cauchy's Integral Theorem)

Statement : If | f(z) dz, where f(z) is continuous in the region, is zero when taken round any

simply closed curve, then f (z) is analytic.

Proof : Take z, as a fixed point and z any movable pointin the given region as shown in the Fig. 6.
Then the value of the integral

is independent of the curve joining z, to z and is dependendt on z only.

z+h

so F(z+h)= ZIO ft)dt .7
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Fig. 6
tnen P20 )= 100 1
:Z}h f(t)dt

Since the path of integration is independent of the curve joining z to z+h, let the path be a straight
line so that

z+h

Pz =F(2) ¢, 17 (O a-T1(2)] 10

So LtT=F’(z)=f(z)

showing that F'(z) exists for all'z' or F'(z) is analytic inthe region. Thatis, f(z) analytic.
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6.11 Examples

(1). If'C'is acircle of radius 'r' and centre z, and if n is an integer, what is the value of

dz
J n+l |
(2-2)
Solution : The given equation of the circle 'C' is |z—20| =r or(z-z)=ré€’

~dz=r€?ido where g ranges form 0to 2.

dz 2r r @i do

"'(-[(Z_Zo)m-l = ° rm.1ei(n+l)9
or —ing |27
I Fem gg_ i €
r o r- —inj
_1 i 1_e—27'mi '
=m(e " —1)= pwr =0 if n=0

_ e—Zﬂni

If n =0, we have to apply L' Hospital's rule to o Instead, it will be easy to start the

problem afresh with n = 0.

dz 2rrd? i do .
o 7= 5 = 27

c(z—zo) o Tre€

z

dz if C is a circle of unit radius with centre at (@ z=iand(b)z=-i.

_ e
(2). Find the values of (J;zz 1

Solution : (a) The integrand of the given integral has the singularities at z=+i obtained by putting

z?+1= 0. But with respect to the given circle |z—i| =1, the singularity z=+i only lies inside the
contour. So we write the given integral to have a comparison with Cauchy's integral formula, in the

’ z

i e

form jﬂ dz wherein 741 f (Z) is everywhere analytic in the given circle and the entire integrand
c Z—I

has a singularity at z = i w.r.t. the given circle. So according to Cauchy's integral formula
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%‘i—i e’ e :
| - d2={ } 27Ti=?27ri=7ze'
o

c Z-1I Z+I1 |

(b) In the given contour, |z+i| =1, z=—1 singularity alone will lie inside. In such a case we write the
integral as

-2

Y -

. . i .

) ZfIdZ:|:el x 27zi:e szz re!
z=—i

according to Cauchy's integral formula.

z+1
7 dz \where Cis

(3). What is the value of (I: —

(a) |z-1-2i| =2 (b) [z-2-i|=2and (c)|7=1

Solution : (@) The integrand of the given integral has the singularities given by the roots of z2—27%=0
as z = 0 (2nd order) and z = 2(first order).

But the distance of z = 0 (0, 0) from the centre 1 + 2i (1, 2) is greater than the radius 2 and
hence z = 0 singularity lies outside the contour.

Similarly it can be seen that z = 2 lies outside the contour. Though the integrand has
singularities, as far as the given contour is concerned, it is everywhere analytic. So, by Cauchy's
integral theorem the given integral vanishes.

(b) The singularity z = 2 only lies in the contour |z—2—i| =2, so the integral, to compare with the

(z+%

2
integral formula, can be written as | dz. Hence its value is given as

[ G2)
2 [Z_*;l} _op 33T
z |, 4 2

(c) Out of the singularities z =0 and z = 2 of the integrand, z = 0 only lies inside the given contour
|z| =1. But z = 0 is a second order singularity (since »2 occured in the denominator, z=0is a

(z+1)

second order singularity). Then the integral can be written as [ (2_2) dz Which comes under

c z°

the applications of the derivatives theorem on analytic functions as
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f .
(I:(Z_(;;z dz=27if'(a) @)
Here f(z)zg;azo
(z+1) (zlj
| /(22_2) dz = 2ri 2-2
c z dz

XZ n

e . X
—— dz=2ri—
(4). Show that (J: i dar

Where C is any simple closed curve encircling the origin.

Solution : The integrand has a multiple order singularity at z=0 whose orderisn+1 (.- zZ"** = 0 its
order is n + 1) and it lies inside the contour.

So applying the derivatives theorem (5) on analytic functions
e“ 2ri | d"e”
—— dz=—
(-[ Zn+1 m |: dZn :|ZO

_ 27,

n

(5). If f (z) is analytic within and on a circle of radius r with centre at z,, then show that

InM
rn

17 (z) <

Where 'M' is the maximum value of |f(z)| on'C",
Solution : According to the derivatives theorem on analytic functions (5), we have

ﬁf f(z)dz
27“ c (Z_Zo)n+l

()| =
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_In |f )|
T n+1

=

n _ _
_|2_7Trn+1 J|dZ Since z-z,=ré’, |z-z|=r, dz=ré’.i dg

M 2z
<o [rdo |dz| =r do

or <

This inequality is also called as Cauchy's inequality.

zt

e
(6). Using Cauchy's integral formula, show that izg_'_l

dz=2zi Snt if t~0 and Cis 17 =

Solution : The integrand has the singularities given by the roots of z>+1=0 (i.e.,) z=i and —i
which are simple (first order). Both lie inside the contour. According to the integral formula, there

1
should be only one factor in the denominator related to singularity. So putting 2y

1 into partial

fractions, we get

1.t [ 1
ZZ+1  (z+i)(z-i) 2| z-i z+i
Then the problem can be written as

7t zt zt

e
S T S
izz+1 2|§ z—i 2|(£z+|

6.12 Summary of the Lesson :

Fundamental definition of a line integral in complex variables is given. Based on the definitiion,
some basic integrals are evaluated. The concepts of simply connected region, multiply connected
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regions and the conversion of multiply connected region into simply connected region are clearly
explained.

If f (z) is totaly analytic in the given contour, then Cauchy's (integral) theorem proves that

the integral of that function over the closed contour vanishes. Certain of the integrals can be evaluated
by simply finding the values of the function at points lying inside the contour and this is given by
Cauchy's integral formula. This has been extended to evaluation of integrals in terms of the derivatives
of analytic functions. Lastly, converse to the Cauchy's theorem has been proved. Assorted examples
have been worked.

6.13 Key Terminology :

Jordan Curve - Contour - Simply connected region - multiply connected region - cross cut
- Cauchy's integral theorem - Cauchy's integral formula.

6.14 Reference Books :

1. M.R. Spiegel : "Theory and Problems of Complex Variables" - Schaum Outline
Series, Mc-Graw Hill Book Co., 1964

2.B.D. Gupta . "Mathmatical Physics" - Vikas Publishing House Pvt. Ltd., 1980.

3. C.R. Wylie Jr. :  "Advanced Engineering Mathematics" - Mc.Graw Hill Book Co.

6.15 Self Assessment Questions :

1. Explain the complex line integral. Starting from the definition find (I:Z dz

b. and (ii) Closed.

, where'C' is (i) from ato

dz
2. Evaluate 922 around (a) the circle |z-2| =4, (b) the circle |z-1] = 5, (c) the square with vertices
at 2+2i, -2+ 2i.
3. Evaluate

2
Sn 7z +Cosrx 7 § e’

(@ (D) (=-2) dz ® a7 9Z \Where 'C' is the Circle |2 =3.

1 e

4. Using derivatives theorem on analytic functions, show that 5 ]

—zdz:(lSint —t Costj
C(22+1) 2 '
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if t>0 and 'C' is the circle |z| =3.

ze? . 2y
5. Apply derivatives theorem on analytic functions to show that i(z+1)3 dz = 27 (t_fj € where
t >0 and 'C' is any closed contour enclosing z = -1.

z+4

; —  dz
6. What is the value of i 210745

(a) if Cis the circle |2 =17?
(b) If Cis the Circle |z+1—-i[=2 ?

(c) If Cisthecircle [z+1+i|=2?
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Unit — I
Lesson — 7

INFINITE SERIES IN THE COMPLEX PLANE

Objective of the Lesson :

- To expand f (Z) in power series in the complex plane.

- To express any analytic function in Taylor series

- To obtain Laurent Series for f (Z) analytic in a ring shaped region

- To define various kinds of singularities

- To work out good number of examples for further understanding.

Structure of the lesson :
7.1.  Introduction
7.2.  Certain concepts in power series
7.3. Taylor's theorem
7.4. Laurent's Theorem
7.5.  Classification of singularities
7.6. Residues
7.7.  Method of obtaining residues
7.8. Examples
7.9. Summary of the lesson
7.10. Keyterminology
7.11. Reference Books

7.12. Self assessment Questions

7.1. Introduction :

Most of the definitions and theorems relating to infinite series of real terms can be applied
with little or no change to series whose terms are complex. However, one surprising property of
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complex analytic function is that they have derivativies of all orders and they can always be represented
by power series like Taylor series. But this is not true, in genreral, for real functions. There are real
functions which have all orders but cannot be represented bya power series. In many applications,
it is necessary to expand functions around points at which or in the neighbourhood of which the
functions are not analytic. Obviously, Taylor's series is inapplicable in such cases and a new type
of series known as Laurent's expansion is required. Thus the taylor series and Laurent series
follow in this lesson.

7.2 Certain Concepts in Power Series :

A series having the form

8y +a(z-a)+a,(z-a) +o.t :Zan(z—a)” ______________ 1)

is called a power series in z - a. Clearly, the power series (1) converges for z = a. In general,
however, the series converges for other points as well. In such case, it can be shown that there

exists a positive number R such that (1) converges for |Z—al <R and diverges for |z—a|> R, while
for |z—a|= R, itmay or not converge. The region of convergence of the series (i) is given by |z—a|< R.
where the radius of convergence R is the distance from a to the nearest singularity of f (Z) . Ifthe

nearest singularity of f (z) is at inifinity the radius of convergence is infinite (i.e.,) the series con-
verge for all z.

A series Zun(Z) is called absolutely convergent, if the series of absolute values (i.e.)
n=1

Uy (Z)| converges.

n=1

un+l

l'll"l

The ratio test for convergence says that if n';tw =L , then ZUn converges (absolutely)

if L<land divergesif L>1.If L=1, the test fails.

7.3 Taylor's theorem :

If f (Z) is analytic inside a circle C with centre at a, then for all z inside C
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Proof : Let z be any point inside C. Construct a circle G with centre at a and enclosing z as
shown in Fig. 1. Then by Cauchy's integral formula

_ 1 gt
f(Z)—gi}:dt _______ 2)

C

G

Fig-1
11 1, zal
Now t-z (t-a)-(z-a) t-a| t-a
1 z-a (Z—a)2 zZ-a
i a 1+t—a+(t—a)2 Foeee '-'§<1 as tis any pointon C and z is inside C.
2 n-1 n
_ 1t 1+z—a+(z—a)2 Foet z—a)nil+(z—a)n !
t-a| t-a (t-a (t-a) (t-a) 1_4-2
t-a
1 _ 1 z-a +(Z_a)2+ +(z—a)'HJr(z—a)n 1
o t-z t-a (t-af (t-a)  (t-a)" (t-a) t-z T

using equations (3), equation (2) becomes

f(2)= 2:7in éﬁ tf_(ta) dt + 22;? (gﬁ(tf_(;;z dt+ .ot (2_2;) S'E(tf—(;;” dt +R, ()
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n
1 ¢(z-a) f(t)
— | —=dt
where = 27r|cl[t—aj t-z

Using the derivative formula for analytic function as

f() m@ f(t)

t
2ri & (t _a)”+1 (n=0,1,....)

Equation (4) becomes

Now we show that n';tw R, =0

|z-4

|t | =n<l, where 77 is a constant.
—-a

f (t) is bounded - |f(t) =M (constant)

t-7 = |(t-a) - (z-a)|>|t—a|-|z—a =r,—|z-a  where r, is the radious of C,.

’
110

t-2

Z—a

1
LR
| | 27[5[1

J‘Znn Mrd@_ n"Mr,

r _|Z rl—|z a| —0 as n>w and n<l

Hence 1(2)=1 (a)+(z-a) f (@) +(z-af v g

which is the required result.
The particular case where a = 0 is called Maclaurin series of f (z) .

7.4 Laurents's Theorem :

Theorem : If f (Z) is analytic inside and on the boundary of the ring shaped region bounded by

two concentric circles G and C, with centre at a and respective radii I}, I, (r1> r2) , then for all z
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in the region,
f(2)-Ya(z-a) +Y
- n:Oarl n:l(Z—a)n ) (7)
_ 1 f(Y)
where o7 ?j (t _ a)ml dt (8)

Fig - 2

Proof : Since the given annular region (fig. 2) is a doubly connected region and z is an interior point,
then according to Cauchy's integral formula

_ 1<]Sf(t)dt 1q5f(t)dt

(Z) " o z (t—z) - o (t—z) ............... (10)

C,
Consider the first integral in (10). We have,

on C,lt-al=r,t-a=r€’ dt=re€’ido,|dt|=r,do and |z-a|<|t-4
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1 z-a (z-a)"" (z-a)" t-a
:t_a+ 2 +..... + n + n+l "’ _ == (11)
(t-a) (t-a) (t-a) " t-2Z

n-1
isﬁwdt:igﬁf(t) Z_acﬁ f(t)zdt+ ...... +(z—a? C.]S f(t)ndtJrRq
i ft-z  2nidt-a 27 {(t-a) 2t ¢ (t-a
=gy +a,(z-a)+.+ ahfl(z—a)”* +R e (12) according to (8)
_ (z-a)" f(
where R, = 27T|<£(t—a)n : dt oo (13)
1 ¢lz-a" [T (1)
Ri< 2 Gl Wy
e ft-al" [t-2
Si@ﬂ”M I’l do
2 L r—|z-4
n"Mn

IA

ie., r1—|2—al_)0 as N—o and |n| <1.

( For detailed steps, vide the proof of Taylor's theorem).
So equation (12) becomes

1 f(t) ) o
Z—Eiiadt—aﬁal(z a)+a,(z-a) +.. . (1a)

Let us now consider the second integral. We have on C2,|t—a|=r2,t—a= r,e’,

dt =r,€’ ido and [t—a|<|z-4.

Hence, — 1 = 1
t—-2z t—-a
—a)l1———
(z a){ z—a}
1 t-a (t-a)"" (t-a)" 1
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so that,
I RO PP S SO PP i Lot
2ri Sft - |§£z—adt 2ri(z-a)’ i(t a) f(t)dt+.... Zﬂicz—(z—a)n f(t)dt+S,
:z—7a+(z—7a)2+"“+(z—7a)“+sn

1 ¢ (t-a)" f(t)
where Snzzﬂi C'c[)(z—a)n (z—t)dt

Lt S, =0 can be proved proceeding on similar lines as in the first integral but the con-

n— o

tour is C,. Thus, combining the reuslts of first and second integrals, Laurent's theorem has been
proved.

Note : The part a,+a,(z—a)+a,(z- a)2 +..... is called the analytic part of the Laurent series. The

remainder of the series which consists of inverse powers of z - a is called the principal part. If the
principal part is zero, the Laurent series reduces to a Taylor series.

The Coefficients of the positive powers of (z - a) in the analytic part, although identical in

™ (a
form with the integrals in Taylor's series, cannot be replaced by the derivative expressions |ﬂ( )

since f (z) is not analytic throughout the interior of G.

7.5 Classification of Singularities :

A point at which f (Z)fails to be analytic is called a singular point or singularity of f (z).

Various types of singularities exitst. It is possible to classify the singularities of a function f (Z) by
examination of its Laurent series.

(i) Isolated Singularity : If z=a is a singular point of the function f (Z) but if there exists a

neighbourhood of a in which there are no other singular points of f (Z) , then z = a is called an
isolated singularity.

(ii) Pole : If the principal part has only a finite number of terms given by
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a, N a, i a_,
z—a (z—a)2 (z—a)n where a_n¢0

then z=ais called a pole of order n.
If n=1, itis called a simple pole.
If f(z) hasapole atz = a, then Z';ta f(z)=oo

For instance,

1 [1+( z—1):|71

z(z—1)2 (z—l)2

is the Laurent expansion of 2(2_1)2 . Its principal part contains only two terms, namely,

1 1

(z-17 (z-)

Hence z = 1 is a pole of second order. This can also be seen from the function as (z-1)
is repeated twice in the denominator.

(iii) Essential Singularity : If the principal part contains infinite number of terms of negative powers
of z - a, then z = a is called an essential singularity of f(z).

1 1 1
A simple example is €”% represented by the series €/*=1+=+——+——+......
p p p y BT

which has an essential singularity at z = 0.

(iv) Removable singularity : If a single valued function f (z) is not defined at z = a but Z';ta f (Z)

exists, then z = a is called a removable singularity. In such a case, we define f (Z) atz=aas

equalto Lt (2).

sinz
Forinstance, f(z)= — then z = 0 is a removable singularity since f (0) is not defined
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z—0

. §inz . sSinz
but ELTT =1, we define f(0)= leT =1, Note that, in this case

snz 1 z 7 zZ £
|z S e e R
z z{_ 3 |5 3 [5 [7

Branch Points : Apoint z= z, is called a branch point, a kind of singularity, of the many - valued

function f (z)if the branches of f(z) are interchanged when z describes a closed path about

Z,. Z* where ais not an integer, log z, tan™* z are some of the common examples of many valued
functions for which z = 0 is a branch point.

vi. Singularity at Infinity :
1 1
By letting ZZ? in f(z),we obtain the function f T = I:(t).Thenthe nature of singularity

at z=o0 is defined to be the same as that of F(t) att=0.

1
A simple example is that f (z)=2" has a pole of order 3 at z=, since F (t)=f (f} e

has a pole of order 3 att = 0.

Note : In many instances, the Laurent expansion of f (Z) is found not through the exapansion
given in the theorem, but rather by algebric manipulation suggested by the nature of the function. It

is often advantageous to express f (Z) interms of partial franctions and expand to get appropriate
series.

7.6 Residues :

If f (Z) is analytic everywhere in the region bounded by the closed contour C, then by
Cauchy's integral theorem.

If, however, f (Z) has a pole at z = a lying inside C, then the integral (15) will, in general,

be different from zero. In this case, we may represent f (Z) by Laurent series (7). We see that
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the coefficient a _; as given by equation (9) is

z)dz

and therefore I f ( =2ri a ;, the integration being taken in the counterclockwise sense around
C

a simple closed path C which lies in the domain 0<|Z—aj<r .

The coefficient a , in the development (7) of f (z) is called the residue of f(z) atz=a
and we use the notation that

a,=Res, , f (z)=Res(a)
Itis to be noted that, irrespective of the order of the pole, always the residue is given only by
a_, and not otherwise.

7.7 Method of obtaining residues :

() z=ais asimple pole: Then the Laurent expansion of f (Z) has only one term in the pricnipal
part and the series is given by

Taking Limitas z—a, Lt (z-a)f(z)=0+a,

Z—>a

or Res(a)=a,=Lt(z-a)f(z) - (17)

Z—a

for a simple pole.

Note : Since f(Zz) contains (z - a) as a simple factor in the denominator, (z - a) f(z) does not
contain (z - a) as it gets cancelled with that in the denominator.

(i) z=ais apole of order 2 : In this case, the principal part contains two terms and the Laurent
expansion is
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a, a,
f(2)=¢(2)+ s—a. (z-a) where ¢(z) is the analytic part.

(z—a)2 f(z):(z—a)2<15(2)+a71(z—a)+a72 ----- (18)

So as to obtian the residue a_,, differentiate (18) with respect to z and then take the limit
as z—a.

dl(z-a)' f(2)] 4

. _ o _ 2 —
M gl = ora,
d
or a,=1t | (2-2)" 1(2) ] (19)

which is the residue for a second order pole.
(iii) z=ais apole of order 3: For a third order pole, Laurent expansion is given by

a—1+ a, + a;
z-a (z-a)’ (z-a)

f(z)=¢(z)+

To obtain the residue a_,, differentiate (20) with respect to z twice and then take the limit as
zZ—>a.

We get
d? d?
thay[(z -a)’ f(2)] - ZI;taE{(z—a)3¢(z)}+2.1.al+0+0
=0+[2a,.
1., d?

ey sl 1]

(iv) z=ais apole of m" order : Generalizing the above formulae, we get the residue of f (Z)
at a pole of m™" order as

Res(a)=a,

I
—~
N
N
~
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7.8 Examples :

(1). Find the Maclaurin series of f (z)=tanz.

Sol : When f(z)=tanz
f'(z)=sec’z=1+tan’ z=1+f*(2)
f'(0)=1

observing that f (O)=0, we obtain by successive differentiation

fr=2ff f(0)=0
: £7(0) 1
fr=2f" 21 7 (0)=2o0r é)=§
fO=6f f +2f f “(0)=0
f®0) 2
£ —6f” 48f f 42 f(0)=160r Ié()zﬁ

Hence the Maclaurin series is

1
(1+ 22)2

(2). Obtain the Maclaurin series of f (Z)=

Sol: Let ¢(2)=

1+ 2°

=1-22+2* -2+ B +....

¢ (2)= _222:—22+423—6z5+8z7— .....
(1+22)
or
1 2 4 6
f(z)= ~=1-27°+3z2"-47°+.....
(1+22)

Which is the required Maclaurin series
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(3). Find the Taylor series of the function

f(2)- 27°+9z+5
178712 with centre at z = 1.

Sol : Putting the given function into partial fraction, we get

f(z)= 1 +2

(z+2)2 z-3

1 2

[3+(Z_1)]2 2-(z-1)  thecentreisatz=1.

I |
1 1 1
or f(z)== —— [ e (23)
° 1+2;12 1_;(2_1)
i 3
Now consider the expansion
1 2 3
:—:l— — A T
¢(x) T X+ X=X+
¢ (x)=- 1 > = =1+ 2x-3x" +.....
(1+x)
~1 3(z-1) ~1)°
P NP = G Y G
( z_]_j 3 3 3?
1+——
3
1 z-1 (z-1)° (z-1)
and 1—:1+ > +( 22) +( 23) +.ueee
1—5(2—1)

. Equation (23) becomes

—t— + e
9 9 3 9 F 9 3F

f(z)z{z_zz—1+s<z—1>2_f<z—1)3 Hl_z-l (-1 (-
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-8 31 23

2

= z-1)——(z-1) .....
9 54( ) 108( )

is the required Taylor expression.

Out of the sngular points 3 and - 2 of f (Z) since z = 3 is the nearest to the centre z = 1,

the series converges for [z-1] <2.

. T
(4). Expand f (Z) = 9Nz in a Taylor series about Z=Z and determine the region of convergence

of the series.

Sol: f(z)=sinz
T T
Let UZZ_Z or z= U+Z' Then we have

Sinz=sin| U+— | =SiN U COS—+COSU SIN—
4 4 4

:%(sinuwosu)

—Q_ u_u_3+u_5 + 1_u_2+u_4

- _ 3 2t
J2[ uz  u®

=7_ 1+u—E—E+E ...... j}

ey (8 ()

T
since the singularity of sin z nearest to 2 is at infinitly, the series converges for all finite

values of z. (i.e.) |7 < .
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z
(5). Expand f (Z) = —(z N 1) (z+2) in a Taylor's series a) about z=0 and b) aboutz=2. Determine

the region of convergence in each case.

f(z): Z _ 2 B 1
Sol. (z+1)(z+2) z+2 z+1

=———+t—... is the Taylor expansion around z = 0. The singularities of f (Z) are

z=-land-2. z=-1isthe nearest singularity to the centre z = 0 at a distance of 1. Hence |z|<1
is the region of convergence.

2 1
f(z)= _
(b)- (2) z-2+4 z-2+3

- -1 -1
- 1 1+Z;2 _E 1+Z;2
27" 4 R

N |
N
N
N
R

11

1 1 2
=———(Z2-2)+| —=——=— |(Z2-2) .... i '
6 72( ) (32 27}( ) is the required expansion.

Out of the singularities -1 and - 2, the nearest singularity to the centre z=2isz=-1ata

distance of 3 units. So the radious of convergence is |Z—2|<3.

7z2-2
(6). Find the Laurent expansion of the function f (Z): (Z+1) 2(2_2) in the annulus

(@  1<|z+1<3 (b)  O<|z+1<1 c) [z+1>3
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Sol : Applying partial fraction to the given f (z). We get

3 1 2
e R (24)

(a) The Laurent expansion is required in the positive and negative powers of z + 1 as the annualr

region is 1< |Z+:q<3 . The first term of equation (24) is already in a negative power of (z + 1). We
modify the second and third terms of equation (24) so that z will appear in the combination of z + 1.

1 1 1 1
= - 1—
z (z+1)-1 z+1{ z+1

1
1
} |z+1>1 °"m<l from the annulus

_ 1 1+ 1 + 1 +
z+1|" z+1 (z+1)2 | and

z+1

2 2 —2(, z+1\)"
= =—1-— <1 satisfied by the annulus.

z-2 _(z+1)—3 3 3

2
——E[1+Z;1+(Z+21) +]
3 3 3

. The expansion in the annulur region 1<|z+1<3 is

z+1 | z+1 (z+1)° (z+2) 3

3 1 1 1
f(2)=- +[ + + +] —3—3—22(z+1)—3—23(z+1)2

2 2 2 2 2 1 1
:[_§—§(2+1)—§(z+1) ...... } [— Z+1+(z+1)2+(z+1)3+ .....

(b) In this case also, the expansion is in powers of (z + 1). The first term of equation (24)
remaining to be the smae, the second term can be written as the convergent series.

1 1 —
A -[1-2+1]

|z+1/<1 as per the annulur region

:—[1+(z+1)+(z+1)2+...}
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2 2 2[ z+1}_1 z+1
£ - - _Lf1-2= e <1
z-2 (z+1)-3 3 3 3
:—E[1+Z;1+(Z+1) o ]
3 3 3?
So the required expansion in 0<|z+:|j<1 region is
3 2 2|, z+1 (z+1)
f(z)=—————|1+(z+)+(2+ 1) +.... |——|1+—+ +....
()= |1 (2D +(ze 1) o |- 1 5

:{_g—(1+3—22j(z+1) — (1+§)(z+1)2+ ...... } —%1

Note : The given function contains z = -1 as a pole of first order. So the principal part of the Laurent
expansion around z = -1 should contain only single term as is true from the expansion obtained.

1
Further the residue of f (Z) at z = -1 is the coefficient of Z418s per definition (i.e.) Res (-1) =-3

which can also be seen to be the same even if we apply the formula as

72-2
Lt 1)——=-3
Lz )(z+1)z(z—2)

(c) The convergent expansion in the region |z+]j >3 is given by

-1 -1
f(z)=- SHE TN Y S U P
z+1 z+1| z+1 (z+1) z+1

3 1 1 1 2 3 3
=— + + + 5t |+ 1+ + 5t
z+1 z+1 z+1 (z+1) z+1 z+1 (z+1)

7 19
= + +o

(z+1)2 (z+1)3

. _ sinz _ T
(7). Find the Laurent expansion of f (Z)Z 7 Wwith centre at Z=Z.
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B sn(z—ij+cos(z—} .
Ty
4

isnu+cosu

NI
:iiKu_u_erus ..... j+(1 u—2+u4 ..... j}

2 u? 3 [5 2 |4
_ii{lw_uz u3 u u5 e }

2 u° 12 I§ Iﬂ 5 67
:[LL+LL_L 1} { S }

20 J2u? 2|2 u f@flﬁ \/§|§ .....
_i)1 1 11 1 Z‘Z+
- R




ACHARYA NAGARJUNA UNIVERSITY 19 CENTRE FOR DISTANCE EDUCATION

T

4 is given by the

n
Note : Since 2= is a pole of order 3 for f(Z), the residue of f(z) at z=

1

VAR 1
coefficientof | _" | as ~ \/5 2 This can also be obtained by the formula for residues as
4

Py
@D
wn
VR
NG
N
|
N
o
N %
7 N\
|
INIES
N
7\
I l’.
N
N—
w
b
Il
N
1
NN o
—~
7
>
N
N—
1
2
N
I
I
[
[
E‘H
N

nz
7K

(8). Find the residue at the singularity of the function by applying the formula and verify by the

Laurent expansion.

(sinz)
sinz
Sol f(z): - = Zkz—l

sinz
Here z =0 is a pole of order k - 1 as T tendstolas z—(Q orz=0is aremovable

_ _ sinz
singularity for —

g2 Sinzlzk—l
1 [ z

Now Res(O)=ZI;t0 > 17 (25)
gk-2 sinz
_L 1 ( Z
250lk—=2"  dZ“?
z2 7
. T T T T T T aeseaas 2 4
snz__ BB 4 2,7 e (26)
z z ENE

If kis even, k - 2 is even.
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k-2
) th . . _ (_:l')T z*
.. (k=2)" termin equation (26) = PECIE]

After ( k - 2) differentiations, (k - 2)th term becomes independent of z and is given by term

k=2 k-2
2

(V2 ()Y

. 7= _
independent of K—2+1 (k—l)

So while taking the limitas Zz— 0

1 (9> (Y
Res(o):|k;2' (k- = k1

If kis odd, (k - 2)is odd. Since all the terms in equation (26) are even powers, after (k - 2)
differentiations of equation (26), the terms contain powers of z or there is no term independent of z.

and the remaining terms vanish.

Soin the limitas z—0 , all the terms vanish and hence Res(0) vanishes.

k-2
2

So Res(0)= % k is even,

0 k is odd.
. Z3 . 25
sinz i -t —.....
The Laurent expansion of - is given by the series SNz _~ 3 [5 . (27)
k k
z z

1
If k is even, k - 1 is odd, we pick up the term in equation (27) which gives P so that its
coefficient corresponds to the residue at z = 0.
k=2 k-1
(02

That term is =

=

)7
ReS(O)z( ) (kis even)

k-1
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1
If k is odd, the Laurent expansion contains 2 term after constant term and not 5 term.

Then Res(0)=0 for odd k.
Hence the result.

ezt

zz(zz+22+2)

(9). Find the resides at the poles of the function f (z)=

Sol : The poles of the function are given by the roots of z2=0 and z2+2z+2=0
or z=0 (second order).

z=-1+i and —1-i (each simple)

Res(0); Res(0) = Lt li{ ¢ ] zz}

0|1 dz 22(22+22+2

2 Vil zZ
) Lt(z +2z+2)te" —€"(22+2)

2

20 (z2 +27+ 2)2

i): Res(-1+i)= Lt (z1-1)ef
Res( —1+i): T Z (24 10) (24 10)

ezt
- It -
214 7 (Z+1+i)

Res(-1-i):
H Zt
Res(-1-i)= Lt — (zedri)e”
-1 7 (Z+1+i0) (z+1-i)
oy & e ol

z5-1-i ZZ(Z+1—i) (1+'[)2(—2i) - 4
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7.9 Summary of the Lesson :
The necessary basics of the power series is given. The proof of Taylor's theorem for a
power series expansion of an analytic function f (Z) around any given point of the region is given.

A very important Laurent expansion of an analytic function f (Z) in an annulur region is given.

Various kinds of singularities and the formulae for obtaining residues at the singularities are defined
and derived respectively in the light of discussion of the principal part of Laurent expansion. Several
variety of examples have been worked for better concepts of singularities and residues.

7.10 Key terminology

Power Series - Taylor Series - Laurent Series - Singularities - Poles - Branch points - residues

7.11 Reference Books :
1. M.R. Spiegel ; ‘Theory and Problems of Complex Variables'

McGraw - Hill Book Co., 1964
2. E. Kreyszig : 'Advanced Engineering Mathematics'
Wiley Eastern Pvt. Ltd., New Delhi, 1971
3.B.D. Gupta : '‘Mathematical Physics'
'Vikas Publishing House Pvt. Ltd., 1980

7.12 Self Assessment Questions :

T
1. Find the Taylor series expansion of f(z)=tanz about 2=

1
2. Expand f(z):(1+z

)2 around z = i

1+z
3. Expand In 1-7 in a Taylor series about z = 0.

4. Without performing the Taylor expansions for the following functions about the indicated
points, write down the region of convergence in each case with reasoning.

z _Z+3
(a) P aboutz=0 (b) (z-1)(z-4) aboutz = 2 (c) secrz aboutz = 1.
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z

5. Give the Taylor expnasion of 2212745 around z = 1 and determine the radius of conver-

gence.

f 1

6. Find the Laurent expansion of (Z)= (z—l)(z—2) for the annulur region

@ |Z<1, () O<|z-1<1 (c) 0<|z-2<1
7. Expand (2)= 2 (z-) in the Laurent series in the region (a) 0<|z—i|<1 and (b) |z—i|>1.

cosnz

8. Find the Laurent series for (1_ 2)2 about the centre z = 1.

7" -2z
9. Find the residues of f (Z):(Z+1)2(22+4) at all its poles in the finite plane.

1
10. Find the residues at the singular points of the function (24 _1)2 .
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Unit -1l
Lesson - 8

Contour Integration of Definite Integrals

Objective of the lesson :

* To prove a theorem on residues

* To apply that theorem for the evaluation of several definite integrals.

* To explain several computation techniques for the evaluation of integrals with examples.
* To make the reader to understand the techniques such as choice of the contour, judging

the positions of singularities and applying the residue theorem.

* To give as many worked examples for better concepts and understanding.

Structure of the lesson :

8.1. Introduction
8.2. Residue theorem
Examples

2r
8.3. Integrals of the type | R(cos6,sing) do
0

Examples

(oo}

8.4. Improper integrals of rational function : ] f(x) dx

Theorem
Examples
8.5. Improper integrals of rational function when poles lie on the real axis
Theorem
Examples

8.6. Integrals of the type | f(x)cosmxdx and | f(x)sinmx dx

— 00 — 00
Jordan's inequality
Jordan's lemma
Examples
8.7. Evaluation of Integrals using double circular or full circular contours.
Examples.

8.8 Summary of the lesson

8.9 Key terminology

8.10 Self Assessment Questions
8.11 Reference Books
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8.1. Introduction :

In the last lesson, Laurent's theorem, particularly the principal part, was studied in detail.
Definitions of singularities and the residues at the singularities were given. The formulae for the
computation of residues at poles of various orders were derived. These will be used in this lesson
to evaluate definite integrals using contours.

8.2. Residue Theorem :

Theorem : If function f (z) is single valued, continuous and analytic within and on the boundary of

the closed contour C except at a finite number of singular points z,z,,.......z, inside C, then

 f(2)dz=27i[Res(z)) +Res(z;) +...+Res(z,) | (1)

Cc

@@@%
@

Fig. 1.
Proof : Let us draw a set of circles C, G,........... ,C, with centres z, z,,.......... ,Z, With an
arbitrarily small radius. The directions (as shown in Fig. 1) of C, C,,.......... ,C, and C are all positive

when they are taken in anticlock-wise sense. The given function f (z) is every where analytic in the
new region (multiply connected) where the outer boundary is C and the inner boundaries are
C.Chnn ,C,,. Hence by applying Cauchy's integral theorem,

or

Also
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But according to the first term in the principal part of Laurent expansion, each term in the
RHS of (2) represents the residue f (z) at the respective singularity.

1
(i.e) nglf(Z)dZ = Residue of f(z) at the singularity z.
Then Equation (2) represents
%é f(z)dz=Res(z;) + Res(z;) + ......... +Res(z,)
or
[ f(z)dz = 2xi En;lR&(z,)
c -

Hence the theorem is proved.

This important theorem has various applications in connection with complex and real
integrals. We see some examples on complex integrals.

Examples :

1
(). Integrate (23_1)2 in the counterclockwise sense around the circle C:|z—]l=1

Solution : The function f(z)=

> has three poles each of second order and they are given

(7-1)
by the roots of 22-1.

27i Ari

Soz=1, o3 o3 arethepoles (eachsecond order). The distance of each pole from the

centre (1, 0) of the given contour |z—1|:1 is found as less than the radius 1, then that pole lies
inside the contour. Thus the pole z = 1 only lies inside the contour.

So applying Cauchy's theorem for residues, we have

Idz

C(23_1)2 = 27i [ReS ()] overenne. 3)

Since z = 1 is a pole of second order,
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1d 1

2
Res(1) = 231[15 (23_1)2'(2_1)

Lt d 1

JERS: (22+ z+1)2

~2(2z+1) 2
= 3 = — —
Z_’l(z2 +z+1 9
-. Equation (3) becomes | 5 = 27 (_—Zj i}
1
(2) Integrate m (m . a+ve integer) in the counterclockwise sense around any simple closed

path C enclosing the point z = a.
Solution : z = ais a pole of order 'm' which is given that it lies inside the contour.

(z-a)"

dm—l
1 (z-a)"
Hence Res(a) = Lt =0 (m=2,3,....) Butwhenm =1, then the pole

z—a |m-1 dzm1!

1 1
- ion —— i i R =Lt (z-a) —
z = a of the function 7 is only simple pole. Then the es(a) e (z-a) ,_a - Hence the result
is
c(z—a)m 0 (m=23...)
z
(3). Integrate , 2 around C: 17 =1
f _ z V4 1 1

Solution : The function (Z)— 421 (22_1)(22+1) has simple poles at Z=E,—§ which lie

inside the circle.
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1 1

1 (Z_zjz 1 57 1

Res(—j: It — </ _=- 2 _=

2) ,,1(2z-1)(2z+1) 2'1+1 8

2
1 (Z+;)Z 1 - 1
Res(__jz 1 2.1
2) ,, 1(2z-1)(2z+1) 2 -1-1 8
2

s 22 dz = 2zi [Res[EJ + Res(_lﬂ
cdz°-1 2 2

= 27i E ik

2

(z+4)3
(4). Evaluate |— dz where Cis |7=1

cZ +57°4+62°

~ (z+4)3 S _ (z+4)3
f(z)= 45831622 72(z+3)(z+2)

has the poles z = 0 (2nd order), -3 and -2 each being simple. But z = 0 only lies inside the
contour C.

Res(0)= Lt —
z-0 dz 22(z+3)(z+2

d| (Z+4)3 22]
5

. 1&]

20 dz _(z+3) (z+2)

L (22 +52+6) [3(2-}-4)2} _ (Z+4)3. [22+5]

220 (22+52+ 6)2

_6.34-45_4°2(-1) 8

62 6° 9

3
z+4 i
—4( +3) ; dZ=27Ti(—§)=——16m

cZ'+52°+67 9 9
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1
(6). Find [ 557 @ where Cis [7=2.

1
zsinz

Solution : The function f (Z) has the poles given by z sin z= 0 (i.e.) z =0 is a second

. 2 7 z 7
order pole as zSNz=2 z——+—... =7 1——+Z—+ ........ and the other simple poles are z=tnn
3 15 3 5

wheren=1, 2, ...... which lie outside the contour.

So, z =0 (2" order) only lies inside the contour.

d

~.Res(0) = Lt —[ = zzj

-0 dz\ zsinz

d z d 1
:Lti[ij: Lt —— = U ——=—

20 dz\ snz |~ 20d2| 7 7 >odz), 7 Z
3 [5 3 15
2 2 YV 22 42
= - 1__+_ ..... . - - :O
250 3 5 3 1[5
1
dz=0
So é zsnz

2r
8.3 Integrals of the type gR(COS&Sin@)d@ :

We consider the integrals of the type

2n
| = [ R(cos®, sing) do
0

where R(cos@, sin@) is a real rational function of cos@ and sin@ finite on the interval

. 1 1 . 1 1
0<0<2r. Setting & = z, we obtain €0S6 = E(HEJ and sin6 = > [Z_EJ' Then the integrand

becomes a rational function of z, say f (z) . As granges from0to 2r, the variable z ranges around
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L . . i dz . o dz
the unit circle C, |z =1 in the counterclock wise sense. Since a0 i €7, we have df = T, SO that

the given integral takes the form
dz
I =[f(z)—
(J; ( ) iz
The next step is to find the poles of the integrand and check the poles that lie inside the

contour C:|z| =1. Then according to residue the theorem, | =2zi (Sum of the residues of the
poles that lie inside the contour).

Examples :
27 g2

(6). Evaluate | = jM a>b>0
o a+bcosé

Solution : Choosing the contour C as |7 =1

(i.e.)) 7z=¢? . cosf = E(Z—i—lj, sin @ :i_(z_lj
’ ' 2\ z 2i z

) dz
dz=€?.i do or do =

sin’0 4

. 2— 2
" a+bcos® 22( 1 (Z 1)

ar (7 41)| " 225 2z
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_2a, |4,
The integrand has the poles z = 0 (second order)and ,__ b Vb* 2, /a_z_l
2 b \b?

each being simple.

E>1

2a
> , then |B|>1. Since o and B are the roots of ZZ+FZ+1:O’ then o =1. Since

|ﬁ|>L then |0‘|=i <1
18]

So out of the three poles, 0 and « only lie inside the contour.

2
22-1) . 2
~Res(0)= Lt 3 (#-1)
=0 dz zz(zz+2az+l)
b

N (22+2;l z+l].4z(z2 —l) —(22+2:j(22 —1)2 on

z—0 2
(22 +% z+1j

_B) 2
a-p b
(22 —1)2 dz 2a _ |a° Ari
=27i| —==+42,|=-1 :—[—ah/az—bﬂ
¢ 22(22+2a z+1j b b* b
b
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2n : 2r
(7). Prove that gemse cos(sind—no)do ZE where n is a +ve integer.
Solution : Consider the integral

| =2jﬂe°°59[cos(sin@—n0)+isin(sin@—n@)}d@
0

zzfecose ei(sine—ne) do = Zfe(coseﬂsine) e—ine do
0 0

_ . 1 1
Let the contour be z=¢?, SN0 = 5 Z_E

1 1
0039_2 Z+ , dz=€%i1d0 =izdo

"‘ZJfZe(cosensinQ) .e_ine do = J_ez(z')*n dz _ 1_-[ ?il
0 c 1z lcZ

dz

The integrand has a pole z = 0 of order n + 1. and this lies inside the countour.

") 1de 1
Res(0) = i \Z J=Lu -

z—>0|£| dZn Zﬁom dz" m
1. ¢ .
= T(I;Fd == 27r [ by residue theorem
2
L

2r 277

Now | € cos(sind-nd)dd =Rel = —

0 [n
Hence the result.

(8). Evaluate | = T ado a>0
0

a’+sin%0

Solution : Let us change the integral limits from O to = to 0 to 27 so as to apply full unit circle

adeo

contour. Then —EJ 22+sin2g Since the integrand is an even function.
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adz

w7

2¢c .

1
Proceeding as in Ex. (6) for substitution, we have | ==|
|z{a2—

@I zdz
i ¢ 4a’P-7+272-1

=+2ai | 2dz
c 24—(4a2+2) Z+1

The integrand has the poles given by the roots of z“—(4a2 +2) 2#+1=0

Since itis a quadraticin z2, letthe two roots be 72 = o2 and Z° = B sothat o2+ B?=4a’+z,
further, 242 =1 from the biquadratic equation. Let ‘a2‘<l, then ‘,6’2‘ >1.

So +a and —a poles (simple) lie in the contour.

‘ ~ (z-a) z B a 1
~.Res(+a)= z|:>ta(22_ az) (zz—ﬁz) 2a(a2—ﬂ2) = 2(a2—ﬁ2)
1 1

Similarly, Res(-a) = =

| =2ai . 2ni L1 _
[2(042;32) 2(a2ﬁ2)] by residue theorem

2

We know that (ﬁz—az)z = (ﬁ2+a2)2 — 4o? B2 =(4a2+2) 4= (4a2+4) 43>

or ﬁz—a2=1/16a2(a2+1) —da/a’+1

. 4ra Vid

daa’+1 +/a’+1

T do  2n b
(9). Show that J a+bsing \/az_bz a>[ using a suitable contour,

0
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2 de
[———
Hence deduce the value of o (a+bsin0)2

Solution : As in Example (6), if we proceed with the substitution of a unit circle contour |z| =1,

| _do | o 2
o a+bsing b(ZZ_l) ¢ b2 +2aiz-b
at 27i

—EI dz
be 2,28, 4
b

The integrand has the poles given by the roots of
2 2ai 2—1 _2_aj+ _4a2_|_4 = _ﬂ—}— _a_2+1
22 1=000r T T T2 b\ b?
ai . a’
{_Ei'\/_“?] sincea>b
_ 2_ K2 A [a2_R2
_ a+,/a’-b i and a—y/a’-b i
b b
_ [a2 12
If we put « =a+Tab'

[A2 2
i and B= $i then |a|<1 as |B|>1 from the given

which are simple.

conditions a>|b|. and |a||B|=1.

So the simple pole o only lies inside the contour |2=1.

1 1 b
Res(a)= Lt (z—«a = =
( ) zaa( )(z—a)(z—ﬁ) a_ﬁ 2i\/a2—b2
. 2 o b
o= 'm from the residue theorem
2r

~ [2_p? Which is the required result.
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| 2 do b) = 21
Now consider ~ ~ g a+bsng =1(ab) /7 Taking the partial derivative w.r.t. a on both
Zr -1do ra 1
. I = =
sides, we get o

2

(a+bdng)® _(az—bz)% 2

do 2ra

or 0 (a+bsin(9)2 (az—bz)%

(10). Evaluate ] 5

c0s260
| 52000 df py the method of residues.

Solution : Let us change the limits of integration to 0 to 2, as we use full unit circle as the contour.

e

cos20 do - 17 cos20 ) _
5+ 400S0 _E,Lm -+ the integrand is even.
_ 127 cos2¢ _
_2£5—4ms¢ ¢ iFr=6=¢

1 1
As the contour ¢ is |7=1, C0S2¢ = E(Zer?j

1
cosp = —| z+
o=3(

The integrand has the poles z = 0 (second order) and Z

1 o _dz
Ej’ dz=€’ i d¢ or d¢_E
1
| lj E(Z4+1) 1 (z4+1)dz
2C|z{5—242(22+1)} ) Z(-27+52-2)
i (z +1) dz

1
ZE and 2 as simple poles.
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1
But z=0and 5 only lie inside the contour.

(2 +1
Res(o): Lti ( ) L d Z4+1

7> t— | ——=
o0dz ZZ(Z—;)(Z_Z) z—-0 0z 22_522+1

g [zz —522+1j(323)—(z4 +1)(22—2J

- _5
250 adz 2 = 2
(22—5Z+1j
2
(Z— (z +1) i |
Res(%j: |_t1 21 _ 116 - :_%
Z— ZZ 7= 2_2 4if o
i ( 2)( ) 4( 2)
L . ,
T8 2 6 according to residue theorem
_
12

T f (x)dx

—00

8.4 Improper Integrals of rational function :

The integral _J f (X) dX for which the interval of integration is not finite, is called an improper

integral. Such integrals will be evaluated using contour integration techniques.

The method consists of the following steps

0] Consider the function f (z) by replacing z for xin f (x)
(ii) Find the poles of f(z) and their orders.

(iii) Let us choose a semi-circular contour C given by |z| =R,Imz>0asinFig. 2. (i.e.)
upper half plane. We choose R large enough to include all the poles in the half-
plane.
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-R o R
Fig. 2.

(iv) Consider those poles which lie inside the contour and find the residues at these
poles only.

(V) Applying Cauchy's residue theorem and taking the limit as R—o0, we can write
+R
[ f(z)dz= Lt | f(z)dz+ Lt [ f(x)dx (4)
. RO G, Rorw o O
=2z (sum of residues at those poles which lie inside the contour)

(vi) In most of the problems Rl;tw CI f (Z) dz always goes to zero according to the theorem

that follows.
Theorem :

Let C, beanarc of the circle |7 = R, having 6,< 6 <0, and R— «, z f (z) tends uniformly
to b, then

Lt [ f(Z)dz=ib(6, —6y) -revrererene (5)

R—>x© Cr

Proof : By selecting R sufficiently great, we can make

|zf(z)—b|<g:>zf(z)=b+77 where 7| <¢.

b+n _ .
3| f(Z)dZ=CJTdZ. Put z=Re” dz = Re"’.ido

6> 62
So | f(2)dz= [ (b+n)i do =hi(6,-6,) + | i dO
Cr 6

61

|1 f(2)dz - bi(6,-8,) < Flnllid6] < &(6,-6)

Cr

s Lt [ f(z)dz=bi(6,-6,)

R—w

Note : In all the problems, as the present syllabus is concerned, the value ‘b’ will be zero.
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Examples :
© dx

(11). Using a suitable contour, evaluate £x6—+1

Solution : Consider the function f (Z) = . The poles are given y the roots of 22 +1=0=26=-1

41
04
or  Pp=gVd ..z=e® (n=0,1,2,3, 4and5)
So the poles are
i 3 5z 7a 97 i 7

z=e6,e6 66,66 66,66 ~a,a’a’,a"a’ a" ifa=e®.
which are all simple.

Let us choose a semi-circular contour C as |z| =R, Imz>0 as shown in Fig. 2. The only

poles that lie inside the contour are ¢, a3, «® since their amplitudes are all less than = as can be
seen from the fig. 3.

Fig. 3

-

Now Res (a) = Lt

15 41 |f Z= is substituted, we get an indeterminate form as 2+1

contains (z—a) as a factor. So applying | Hospital rule for finding the Limit,
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M.Sc. PHYSICS
1 1 a
Re = Lt =—r=
=1 5 "6 "6
1 1 1
Snilad %) = LS 6__1
mlaly Res(a) 6(a3)5 o a
5 1 1 1
i >

i
-, Sum of the residues = ~3

Now applying Cauchy's residue theorem and taking the limitas R — «, we get

(i
L f(Rde 1T 102103 @
Now we prove that RI;EO I f(z)dz=0
7 2
zf(
z\%| | 4oen| 2 1+1| |eoee |26+]4
1 1
—RE:[OO O(gj (order of E)

So according to (5) RLt [ f(z)dz =0
—>0 CR

Or another method to prove CJ f(z)dz to vanish in the limit may be as follows.

o

(z)dz <

=R€e?, dz=Ré’ i d0, |dF =Rdo and |z+z|>|z|-|z)|

2r l
o R°-1

i <—2n
l.e., R6_1
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Thus, in the limitas R— w0, ] f(z)dz goes to zero. So equation (6) becomes

CR
©  dx < dx o
[ ——=2]— =L
X+l X +1 3
T dx s
OI’ 0 XG +1 - 5
_ ©dx 3r
(12). Apply the calculus of residues to prove that [ 37 g
—w(x2+1)

Solution : Consider f(Z)= The poles are given by z=+i and —i each being third order.

3 .
(22+1)
Let us choose a semi circular contour such that |7 = R, Im (z)>0 as can be seen in Fig. (3).

z=+1 only lies inside the contour.

1d*| 1 (z-iY 1d> 1

Res(+i)= Lt —— _ - -
+) 21 2 dz* (zz+i)3 T =i [2.dZ (z+i)

UG (3=

(z+2) 16

Applying Residue thoerem and taking the limitas R—x,

R .3 3
Lt CJR f(z)dz+ Lt _IR f(x)dx = T =g e @)
dz ‘s I |dZ
Now CR(zm)S\ c (|z|2_1)3 AT AREAREA
Rdé 2rR

(:IR (R2 _1)3 (RZ_ 1)3 -+ z=Ré’, |dZ| =Rd6
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dz

S0 R CR( 24 1)3

-.(7) becomes

©  dx 3r
.[ 3 = ?
*W(x2+1)
i x> —X+2 -
(13). Show that 700—)(4 102 19 1
. . ion f(2)= z*—7+2 o A
Solution : Consider the function 241022 +9 whose poles are z=-3i, 3i,i and -1 which

are simple. Let us choose a semi circular contour |z| =R, Im(z)zo as given in Fig. 3. The only

poles which lie inside the contour are +3i and i .

(z-8)(Z-z+2) Lt ZZ-z+2  7+3

Res(3i) = L (22+1)(z+3i)(z—3i) e (22+1)(z+3i) =8
Res(i): Lt_ (Z—i)(zz_z—}-Z) Lt ZZ—Z+2 :1_—i

zoi (z+i)(z—i)(zz+9) Z—>i(z+i)(22+9) 16i

. _+3 110 5
Sum of the residues 48i 16 481 24i

Applying the theorem on residues and tend R to « , we get

72-7+2 ROx2_x+2 27ix5  5r

4 2 —dZ+ Lt 2 5 X = - - (8)
R»ooCRZ +10z°+9 R—® g X +10x%+9 24 12 e
2 2
22-7+2 14"~ |7+2

f <L oo™ s [zl s[al+zl and |z 2> (2] -[2

Now | ! 7411022 +9

T 2_
<[ RRA2 RdD a5 7-Ra |0z = Rdo
o R*~10R*-9 ’
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R(R°~R+2)
Zﬂﬁ

R*-10R° -9

2_
Al EE2 g g
Rowo ¢ Z"+102°+9
Hence Equation (8) becomes
© X*-x+2 5z

- X _—
e X +10X2 +9 12

8.5 Improper Integrals of rational function when poles lie on the real axis :

The procedure of evaluation involves the following steps :
(i) Choose as usually f(z) by replacing x with z.
(i) Find the poles and their orders.
(iii) Choose the semi circular contour C with |z = R, Im(z)>0

(iv) Find the poles which lie inside the contour. Further, if there are real poles, they lie on the real
axis (i.e.) on the boundary of the contour and they are to be indented by means of a small

semi circle such as |z—aj = ¢ (arbitrarily small +ve number) as shown in Fig. 4.

/)

-R :Oa—s q ateER
Fig. 4
(v)Find the residues at the poles interior to the contour.

(vi) Applying Cauchy's residue theorem and letting R—« and ¢—0, we get

Lt [ f(z)dz+ Lt arﬂ‘(x)dx— Lt | f(z)dz+ Lt ? f (x)dx
e R o g
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= 2zi (sum of the residues of interior poles) ......... (9)

Having known the evaluation of Lt Cf f(z)dz, the integral Lt [ (z)dz can be evaluated
—® R >0 C

from the following theorem.
Theorem : If ZI;ta(z—a) f(2)=b where b is a constant, and if C, isanarc 9, <0 <0, of circle

|z-a| =¢, then gI;tOC{ f(z)dz=ib(0,-6,) . (10)

Proof : Foragiven s, we canfind p suchthat |(z-a) f (z)-b|<5 forall |z-a/<p . Again selecting

g<p, we shall have |(z-a) f(z)-b <& onthe arc C, .

w.(z-a)f(2)=b+n where [n| <5
. b+n i ' 2
+JF(2z)dz= [ 702 Nowput z-a=se” . dz=gd’ i dg (01) 55 =19

0, 0,
-] t(z)dz=[bi do + [ni do

Cs 91 91
0
or Cj f (z)dz - bi(6,-6,)| < g | fi| |d6| < 5(6,-6;)
gI;tOCj f(z)dz=i(6,-6,)b
Examples
@ dx

(14). Choosing a suitable contour, evaluate gm :

1
Solution : Consider the function (Z)ZH and the poles are given by the roots of 1-z*=0 (i.e.)

z =+1, -1, +i, and -i, all being simple. Let us choose a semicircular contour C such that |z| =R,

Im(z)zo. The only pole which lies inside the contour is +i and poles +1 and -1 lie on the real axis
and hence they are to be indented as shown in Fig. 5.
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Cr

-R-1-¢ -i_1+8 Ol-5 L 1+0 R
Fig. 5

Res(i) Lt Cal) L

2o (1—22)(z+i)(z—i) 4

Now applying Residue theorem, and taking the limits as R—»x, ¢ and § tending to zero,
we get

-1-¢
Lt jf( z)dz+ Lt [ f(x)dx— Lt | f( z)dz+ Lt j f (x)dx
R—w ¢ R—>o  p -0 C, 1+g
£—0 5%0
R
_5|::[0 c{. f(z)dz +%I:)t0 1+j5 f(x)dx = 27i Res(+i)........... (11)
Integral around Cy
1 02 _2 Rd6
CJRl_ dZ—Cle_ | JR4_1 z=R€?, dz=R€’.id9, |d4=Rd"”ideo
=<0 as Rsw
RI;tmcj f(z)dz=0
Integral around C_ :
z+1 1
Lt (z+1) — = Lt ==
H-l( )1—24 21 (1+z)(1—z)(1+zz) 4

- According to Equation (10) of the theorem,
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4

1 .1 7
Lt dz— i = (r-0)= 22
590(':[1—2 2= |'4(ﬂ ) 4

Integral around G; :

Lt (2 -

21 (1+2)(1- z)(1+ zz) 4

L Lt 14dZ:i(_7lj(7T—0)=—ﬁ—i

6508 1-7 4

-, Equation (11) becomes

B : —
O+ | f(x)dx—ﬂ—|+} f(x)dx+”—|+ [ f(x)dx=2ri i
— 4 - 4 1 4

T dx T
or el-xt 2

T ax T
or 0l-x* 4

(15). Use the method of contour integration to prove that

a-1

X dx—zcosec”—a
> 2 2 O<a<?2

01+ X

Za—l
Solution : Consider the function f(Z) = 1+ 72 which has the singularities.

z=0 (branch point) as z** is a many valued function for O<a<2
and z=+i (each being simple pole)
Choose a semi circular contour C such that |Z=R, Im(z)>0

z = 0 singularity lies on the real axis and hence it is to be indented as noted in the Fig. 6
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CR
CE
|
-R - 0O +g€ R
Fig. 6

z=+i only is the pole lying inside the contour.

iar

_j)z21 ra-1 T3

Res(i) Lt AZZNZT It L, e?
z>i (z+i)(z-i) 2 2 2

Applying residue theorem and taking the limits as R— o, £¢—0

—s R LT
Lt CJR f(z)dz + RILEC_JRf(X)dX_EIZ:[oC{ f(z)dz + ';QI:’E’ a{f(x)dx _ o X(—Elj ez (12)
Now | | f(2)dd< | 4 |dZ z=Ré€’; |dz = Rdo, |1+22|>|z|2—1
Cr Cq 1+22|
L2ZRR
R*-1
a
(i.e.) ngﬂz—Rl -0 as R—»w for O<a<?2

o Lt [ f(z)dz=0

R—)ooCR
a-1 a-1
Lt [ -2 dz=i(z-0). Lt 22 _ =0
g—>ch 1+ 7 z-50 1+ 7
-, Equation (12) becomes
0 a1 w va-1 mai
) X S OX+ | X SUx=—7ie?
o1+ X 0l+x
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(e e
A AL dx=—zi e 2
or(I) 1+t? £1+x2
a-1 0 Xa—l mai
i.e) €| X2dx+({)1+xzdx=—me2
zal
°°Xa_1d _-me? xm 2i
or J1+x2 Tes T 2 A =
e 2 _e2
T ra
= cosec—
2 2

8.6 Integrals of the type | f(x)cosmx dx and jI;f(X)S‘i”mX dx :

When f (x) is a rational function, such types of integrals occur in connection with Fourier
integrals.

The evaluation of those integrals by counter integration methods involves the following steps.
(i) Consider the function ¢(z) = f (z)e™
(i) Find the poles and any other singularities such as branch points
(iii) Choose the contour C such that |7=R, Im(z)>0

(iv) If there are singular points lying on the real axis, let them be indented. If there
are poles lying inside the contour, find the residues.

(v) Apply Resiude theorem and take the limits.

While proving the integral on major semi circular contour to be zero inthe Lt R— o, equation
(5) or usual procedure which has been adopting is not useful. However, Jordan's lemma is useful.

Jordan's inequality :

2 sné
When 0<6<Z , we have —<——<1
2 T 0
e, 2 <sno<o ... (13)

Which is caled the Jordan's Inequality.
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Jordan's Lemma:

If f(z)—>0 uniformly as z—>w, then Lt [€™f(z)
~oec,

Where C, denotes the semi circle |7=R,Im(z)>0.

Proof : Here R is large enough to include all the singularities within C; and none on its boundary.

Since R';tw f(2)=0, it follows that for all the points on Cyg, |f(z)|<g, ¢ being a small

[ €™ f(z)dz

+ve number. Now :
R

< [|e™(|f (2)[ldz <& J|e™||dz
Cr Cr

Rd6  Putting z=Re’, |d=Rd¢

Sgijz|eim(Roos(9 +iRsing)
0

(i.e.) SgTe‘mRs‘”‘) R do
0

T
<2¢R [ e™" dg Where Jordan's inequality can be applied.
0

(.e.)

“mRrY . 0 20
m ~ do '.'Sn927' e—s’nGSei7

Example
(16). Prove by contour integration that

SN mx
0 X

N
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imz

1
Solution : Consider the function ¢(z) = eT where f(z) is taken to be S whichhasz=0as a
simple pole.

Let us choose the semi circular contour 'C' such that |z| =R, Im( z)zo whereinz=0is to
be indented as shown in Fig. 7.

C.

Fig. 7
There are no poles lying inside.

Now applying Cauchy's residue theorem and taking the limits as R—o and ¢—0, we get

imz ,&e eimz 'mx
e b [ e 1t [Sh00 g
-0 R—w
oo ] .
Now [ —-dz < | |dZ Criz= Ré’, |dZ=Rdo
ck Z Cr |Z|
7 o MRsing
< R d0
0
T, —-2mR6
<2[e = df by Jordan's inequality.

imz

Lt [ dz=0

R—)ooc Z
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e|mz imz
Aga|n Lt _[ —dz= |(77,' O)b where b= Lt &

z—0 Z

=1

=i
. Equation (15) becomes

0 oM |mx

je—dx m+j—dx 0
X

s e—lmx imx
or —j—dx+j—dx i
o X o X
2 T3 gy — i
0 X
Tsinmx T
or A 5
— COSX
(17). By contour integration method evaluate f dx

Solution : Consider ¢(z) = Cal

in which z=0 s a simple pole (since z = 0 as per the numerator is a removable singularity).

Choose the semi circular contour C. |z| =R, Im( z) > 0. Since z = 0 pole lies on the real axis and it

is to be indented as shown in Fig. 7. There are no poles lying inside. Now applying Cauchy's
residue theorem and letting R tend to infinity and ¢ to zero, we have

i —e iz iX
Lt jl dz+ Lt jl dx — Lt j ~® g2+ Lt j 1-¢ dx=0 16
R_)DOC Z R—w© 'p X E—)OC £-0 3 X ......... ( )
£-0 R—o0
iz |1_ei2
Now [ =l Put z=Re” , |dZ =Rdo

(1+e’R‘°‘”9)R do

<
R2

—0 as R— « by applying Jordan's lemma

o—n
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1-€” : _g?
'—tocf 2 dz=i(z-0)b where b= Lt z =5 = _ (by L Hospital's rule)
e20L, 70
=n
_ 0 1—g"x ©1-e*
- Equation (16) becomes [ -z dX+£ -z dx =7
01 _ o iX 01 aX
or jl E; dX-I—fl f dx=r
o X 0 X
© 2—2C0SX
(i.e) [ ——dx=x
0o X
©1-CcosX T
adx =—
(I) x? 2

8.7 Evaluation of Integrals using double circular or full circular contours :

Let C, denote the circle |z = R where R—w and C, the circle |7 =& where ¢ —0 these
two circles are joined along a cross cut which includes the positive side of the real axis. This type
of contour is usually used in evaluating integrals involving many valued functions having branch
point at z = 0. Further, poles of f (z) lying only on the positive side of the real axis are to be indented.

In other words, the poles lying on the negative side of the real axis are considered to be interior
poles where the residues are to be computed.

Note : There is no special merit in using a particular curve as contour for a particular integration,
but infact any of the semicircle, circle, quadrant of a circle or a rectangle whichever is suitable can
be used as a contour unless otherwise stated.

Examples

o y@1

T
i i dx = O<a<1l
(18). Using a full circular contour, prove that (J)l+x sn an

a-1

z
Solution : Consider the function f(Z)=1+Z O<a<l, This has a simple at z=—1and z=0is a

singularity called branch point as it is given by 72! 0<a<1, the many valued function. Now let us

choose a full circular contour |z = R having z = 0 indented by a full circle |z =& with a cross cut as
shown in Fig. 8.



ACHARYA NAGARJUNA UNIVERSITY 29 CENTRE FOR DISTANCE EDUCATION

Fig. 8

Residue is to be obtained at z = -1 which is an interior point.

a-1
Res(-1) = Lt %

D27 (et ocac
z—>-1 +Z

Hence by Cauchy's residue theorem, applying limits as R—«, ¢—0, we have
a-1

RlltchR1+de+§l§So R({zmmd(xe )— Lt | dz+ Lt [ —>r

e0¢ 1+2 620 40 1+ xe

= 2ri[ Res(—1) | ......... (17)
27 2 Rt .
— dz| <[ —RdO »z=Re’ |dd = RdO
CIR1+Z (I) -1 |dz|
a
1.€ <2r———0 as Rowo as O<ax<l
Za—l
So Lt _[ dz =0
R—ow CR + Z
A , z-0)21
Similarly, Lt | dz=i(27-0)b where b= Lt (—) -0

£—-0C, +Z z—0 1+z

= d(xéo) '
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ya-1
s (xe™ 0 yal gri(a)
Now Lt _[ %d(xez’”):dex

R—>o0 Re? (1+ x e ) o 1+x

>0
o va-1 )

- _ ,[ X e27r|a dX

o1+ X

- Equation (17) can be written as

w Xa—l DOXa—l )
0. €™ [>—dx-0+| dx = —27i €
o1+ X o1+X
Txa-l a o~ e _, @ oz
or 01+X 1-e*ma g —e™ snar
8.8 Summary :

This entire lesson is concentrated on evolving techniques for the evaluation of various types
of integrals using differnt contours. The integrals using different contours. The integrands,
possessing many kinds of singularities, are useful in the required integrals. Such integrands occur
as functions in stability problem, statistical mechanics, optics etc.,

The choice of a suitable contour depends on the problem on hand. One must be careful
about the many valued functions wherein branch points occur as singularities. In all the problems

we come across, the integral over the major contour as R—o goes to zero. Care must be

excercised in judging the poles lying inside, outside and on the real axis (for semi circular contours)
or on the positive side of the real axis (for full circular contours) and in applying the theorem on
residues.

8.9 Key Terminology :

Residues - Unit Circular Contour - Indentation - Jordan's inequality - Branch points - Full
circular contours.

8.10 Reference Books :
1. M.R. Spiegel - 'Theory and problems of complex variables' Mc GrawHill Book Co. 1964
2. B.D. Gupta ' - Mathematical Physics' Vikas Publishing House Pvt. Ltd., 1980

3. P.P. Gupta, R.P.S. Yadav and G.S. Malik - 'Mathemerical Physics' Kedarnath Ramnath,
Meerut, 1980.
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8.11 Self Assessment Questions :

z
1. If Cis the circle |7 = 2, evaluate (I;cosz

2. Find f 2z where 7=1
T cos26 do k? T K2s1
3. Show that Im is equal to (i) 1~z (k*<1) (i) —kz( 1)( >1)

Hint : Proceed as in Example (10)

. . ZI” Cos26 d0 -~
4. Choosing a suitable contour, prove that ! 514Cos0 6

CosO

2r
5. Show that | € cos(sing) cosf d6 =
0

2r d@

6. By the method of residues, evaluate ]

[T pangep “1<P<t

dx 7T\/§

+x241 6

7. Using contour integration techniques, show that f 2

© dx
8. Evaluate £1+ N by the method of residues.

° dx
9. By contour integration, evaluate L(Xﬂ) (x2+2)

o va-1
10. With a proper choice of the contour, prove that (J)l—x dx=rmcotar g<a<1

smx

T —m
dx==—e"m>0
11. Show that I N 5

n-x

: T9
12. By theory of residues, show that | 2 dx =
0

N
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Cos

© X
————dXx i i
13. Evaluate £X2+a2 by contour integration.

* cos2ax—cos2bx
14. Show that, if a>b>0, then IT dx = 7(b-a)
0

% cosax
15. Evaluate g(x2+a2)(x2+b2)

dx a>0,b>0



Unit -1l
Lesson-9

CARTESIAN TENSORS

Objective of the lesson :
> To develop the concept of a tensor by defining scalars and vectors

> To distinguish between ‘General tensors’ and ‘Cartesian tensors’
> To explain tensor notation and summation convention
> To confine to ‘Cartesian tensors’ in this lesson and explain-tensors of several ranks.
> To give several properties of tensors "
> To treat special cartesian invariant tensors.
> To explain stress and strain tensors along with their physwal S|gn|f|cance
Structure of the Lesson :

9.1 Introduction ‘

9.2 Linear orthogonal transformation

93 Tensor notation and summation convention

94 Classification of cartesian tensors

94.1 (i) Zero order tensor

94.2 (ii) First order tensor

9.4.3 (iii) Second order tensor

95 Symmetric and skew-symmetric tensors
9.6 Algebraic operation on Cartesian tensors
9.6.1 (i) Addition and subtraction

9.6.2 (ii) Multiplication

9.6.3 (iii) Contraction of a tensor

9.7 Some fundamental properties of tensors
9.8 Special invariant Cartesian tensors

9.8.1 (i) Kronecker tensor

9.8.2 (ii) Alternate or epsilon tensor

9.9 Examples of tensors in elasticity

9.9.1 (i) Strain tensor

9.9.2 (ii) Stress tensor

9.10 Summary of the lesson

9.11 Key terminology

9.12 Self Assessment Questions
9.13 Reference Books

9.1 Introduction :

The simplest quantities of Physical interest are those having only one component independent
of the coordniate system used. If we make coordniate transformations without changes of fundamental
units, these quantities remain invaraint. Such quantities are called scalars or jnvariants whose
magnitudes are the functional values.
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Next are the physical quantities which for their complete specification, require, as many
components as the space has dimensions. Such quantities are ‘n*components in an ‘n’ dimensional
space. In a particular coordniate system, the magnitudes of these components are fixed. When the
coordniate transformation takes place, the magnitudes of the components change from system to
system. If we wish to call that physical quantity as ‘Vector which represents the magnitude and
direction of that quantity, its value (magnitude) should be the same in every system. Any changes in
the magnitudes of the components in different systems are related definite rules of transformations.

So far we have considered only two types of physical quantities scalars and vectors. By
recalling some more physical concepts, we introduce tensors. For example, in an isotropic medium,

strerss T and strain S are related by the vector equation T=kS$ , T and § having the same

direction. If the medium is notisotropic, T and § are notin general in the same direction, itis then
necessary to replace the scalar i by a more general mathematical construct capable, when acting
onthe vector §, of changing its direction as well as its magnitude. Such a mathematical constructis

called ‘tensor’.
Similar examples in anisotropic media can be stated such as

) P=¢ E P = electric polarization
' £ = electric field strength
g = electric susceptibility tensor
and i
i) 1=xH i = Intensity of magnetizaltion

A1 =Magnetic Field strength
p = Magnetic secceptibility lenear

If we choose a general curvilinear coordniate system which could be used as in the general
theory of relativity, we call the tensors as ‘general tensors’. However in the case of special theory of
relativity in which we deal with flat or Eucledian space, we can setup a special set of coordinate
systems called ‘Cartesian Coordniate systems’. These cartesian coordniate systems are related to
one another through linear orthogonal transformation. The tensors in this case are called ‘Cartesian
tensors’ which are nothing but a special class of the ‘general tensors’ and are concerned only with
‘linear orthogonal transformation’.

9.2 Linear orthogonal transformations :
Inthe Euclidean space of ‘'n’ dimensious, let us set up two cartasian coordniate systems x'and

ri

x" i=1,...n. The coordniates of a point in the two systems are related by the following equations
of transformation :
x' = ; a; X j
; i (1)

which represents a linear transformation related to the rotation of axes only i.e without any
change of origin. The transformation coeffecients a;arethe cosines of the angles between the
ithand jth axes. '
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Thus a transformation is said to be ‘orthogonal’ if it leaves the length of the displacement

vectoror T'x unaltered.
Soifthe linear transformation in (1) is also assumed as orthogonal, then

2
_E X' =% xkz e (2)

9.3 Tensor notation and summation convention :
The following rules of notation are used in writing tensors and tensor equations.

1 ) Ifanindex appears only once in a term of the tensor equation, itis called a ‘free index'.

2) Ifanindex appears twice in any term of the tensor equation, the term stands for the sum over
all possible values of that index. This is known as Einstein summation convention. The
summation index is a dummy index (repeated index) and can be freely changed over to any
other letter and not already present in the term. This summation index does not represent
tensor character.

3) Noindex should appear more than twotimesinaterm.

4)  Hereafter, whenever a repeated index appears itis understood that the summation is implied
over thatindex and hence summation symbol is dropped.
Using this notation, Eqn (1) and (2) can be written as

x'' ="a xJ )
xixt=xk xk e (4)
substituting equation 3 in equation 4,
x x =(aij xj)(aikx ) a; a; X' x" e (B)

equations (4) and (5) agree only if
a; a, =1 forj= k}

and = 0 forj=k ...(6)
Now introducing kronecker delta syrhbol as
S =1 j=k
=0 jzk e (7)
Equation 6 can be wriiten as
a; ay =0 e (8)

which is the condition to be imposed to make the transformation (3) orthogonal.
To obtain the inverse transformation of (3), we proceed as follows :
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x" =ay x! e (3)
no__ j
or a; X' =a;3; x
— I yk
= 0 X' =x
LxF=a, x" : ‘ _ . (9)

which is the inverse transformation to egn (3).

. , . X
The Kronecker symbol &; in rectangular cartesian coordniates equals to g since

ox! =]

00 Q% j} , Since x' and X are the coordniates of the same system and hence their variations
are independent of each other.
. ox!
Thus J; = Pl (10)
Further, it can also be viewed that 3; acts as ‘index change’ operator
for 5; a;=a; : ; e (11)

Thus the operator 3; operating on an entrity a; has the effect of substituting i for . |

8.4 Classification of Cartesian tensors :

The tensors are classified with different orders or ranks according to the number of components
they have in a space of given number of dimensions. Thus an entity having the number of its
components equal to n*in a space of n dimensions and having the requisite transformation properties
will be called a tensor of rank or order k.

9.4.11i) Zero order or Zero rank tensors
A zero order tensor will have n°= 1 component in every coordinate system. Then ‘Scalars’
are tensors of the zerorank.

9.4.2 ii) Firstranktensors : .

Any set of n quantities which take values A, inone coordinate system and which transform in
the same manner as the components of a position vector (i.e.) such that

A: = a” AJ cenn (12)
are said to be the components of a vector in the n-dimensional Euclidean space with respect to
~ orthogonal cartesian coordinates. .

Thus apentity having n' =ncomponents is a space of n dimensions is said to be a ‘tensor of
rgnk1 "or equivalently an entity having the number of its components equal to the number of space,
dimensions is called a ‘tensor of first rank’ if its components transform under linear orthogonal
transformation as the components of the position vector as in equation 12,
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A first rank will have 3' = 3 components in 3 - dimensional space and 4'=4 componentsin 4
dimensional space.

A first rank tensor is called a ‘Vector'.

9.4.3iii) Second rank tensors :

A second rank tensor in an ‘n’ dimensional space has n? components.

Consider two tensors of the first rank A and B,. Upon a coordinate transformation, their forms
are -

Aj=a; A,
Bj=a, B,
Then the n? quantitive A B, transform as

A B/ =a;a, A; B, ' ...(13)
Any set of n? quantities which transform in the above manner (i.e) which transform as
Ty =a,a, T, A . (14)

are sald to be the components of a second rank tensor’.

In 3 - dimensional space, a second ordertensorhas 3#=9 components and 42 =16 components
in 4 - dimensional space.

Athird order tensorin n-dimensional space has its law of transformation as
Ti}k = ail ajm akn Tlmn LT (15)
Similar law of transformations can be expressed for any order tensor.

9.5 Symmetric and Skew - Symmetric tensors :

Atensor of any rank is said to be symmetric if its two components which are obtained from
each other by the interchage of any two indices are equal. Then it is said to be symmetric with
respect to those two indices.

2ndorder : IfA = A,

i
3rdorder : If Ajjx = Ay then A, is symmetric with respect to j and k indices
A tensor of any rank is said to be skew (anti) symmetric if its two components which are
obtained from each other by the interchange of any two indices are equal but of oppsite sign.

2ndorder : If A, =- A, then A,is skew symmetric i.e., note that all the elements of the type A,
vanish in the case.

then A, is symmetric

3rdorder : If A, = then A is antnsymmetnc with respecttoiandj.

jll"

9.6 Algebraic operations on cartesian tensors :

9.6.1 i) Addition and subtraction :

The sum-or difference is defined only in the case of same rank tensors and the result is once
again tensor of the same rank.

<
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A+ Bl = Ciju

Aijkl - Bij‘kl = Dijkl

9.6.2 ii) Multiplication : '
The product of two tensors of any rank is also a tensor of rank equal to the sum of the ranks of
the tensors concerned. Thus if A, and B, are two tensors of socond and third orders respectively,

‘then their product AiByn= Cijklm is a tensor of rank 2+3 = 5.

9.6.3 iii) Contraction of atensor : \
This is a very typical operation with tensors of rank equal to or higher than 2.
The process of contraction of a cartenian tensor consists of putting two of its indices equal in
which case the summation over that index is automatically implied.
Contraction a tensor gives another tensor which is 2 ranks lower than the original tensor.
Consider atensor A, of rank 5, then its transformation is given as

‘l\;jklm= aip ajq Ay Ay Ay qurst : . 4 (16)
Now apply contraction with respect to | and m by putting | = m in equation 16.We obtain
A;jkmm =aip ajq akr ams amt qu‘rst ‘
= a;, 2, 8, A, qum from eqn. (8)
= aip ajq akr qurst
which is the law of transformation of a 3rd rank tensor
i-e-: A;jk = aip ajq akr qur' ’

Note ; Ifan index labelled to a tensor is a repeated index, it will not contribute to the order of the
tensor. :

9.7 Some fundamental properties of tensors :

i) Ifthe components of a tensor relative to one set of co-ordinate axes are known, its components,
relative to all other sets of co-ordinate axes can be known through the transformation of equations.
The tensor is an entity independent of any particular system of axes.

ii) If the components of a tensor with respect to any co-ordinate system are all zero, then its
components with respect to all other systems will also be zero. Further, if a tensor equation holds
good in one co-ordinate system, it will hold good in every other coordinate system.

iii) Every tensor can be expressed as the sum of two parts, one symmetric and the other
antisymmetric. Thus, if AIj is a tensor, then ' :

1 1 , , . e
Ajj =7 (A +A + S (A - Ay - w_here the first bracket is symmetric and the second
bracket is an antisymmetric tensor. '
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9.8 Special carterian tensors :

Tensors which have the same components in all the frames of reference are called as ‘invaniant’

or ‘isotropic’ tensors. We consider two such tensors, namely, Kronecker tensor and Alternate or
Epsulon tensor.

9 8.1 (i) Kronecker tensor :

in the orthogonal carterian coordinate system we know that the three basis unit vectors _
¢, &,, &; have the property

| 1=J}
-6 = L
0 i#j

or =39; (Kroeckerdelta) _ : ... (17)

~ ltcanbe shown that J; is a tensor of rank 2. Ifitis a tensor of rank 2, it must transform as' -

follows :
5' a; ay Sy =a;a;

= 6, from equation 8 © .. (18)

Hance J; is a tensor of rank 2..

9.8.2. (ii) The alternate or Epsilon tensor :
We know the relation among the three orthonormal basis vectors ¢, €,, &; as
&, X €, =0 and & x§& =¢, ' ... (19)
where i, j, k take values from 1 to 3. |

Sothe direction of the vector & x¢; isalong &, andits margnitude is given by & xé;.&,. Or it
¢an be seen that

x¢,.8, = 0 ifanytwooftheindices i, j, k are equal.
' = +1 iftheindicesi, j, k are unequal andin cyclic order
— -1 iftheindicesi, j, k are unequal and notin cyclic order. ...... (20)
Introducing a symbol «;;, known as alternate or‘epsilon’ tensor, it is defined as follows :
€, = 0 ifanyofthetwo indices are equal.
‘ = +1 ifthe inidces are unequal and in cyclic order
= -1 ifthe indices are unequal and notin cyclicorder ... (21).
This is a third order anti - symmetrlc tensor which transforms as
¢ e;'k T a11 a]m Ayn Simn (22)

If has 3% = 27 components in 3 .- dimentional space of which six only are noh Zero components.
The e- tensor can be used to write the cross product of two vectors Aand B

Let D = A x B, then
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D, =A, B, -A; B, = g, A, B; +€;,A;B, VEn=1l ey =-1
=€, A; B, (using summation convention)

Sin;ilarly bzz S AjB and D; =35, A, B, |
orD,= ¢yAB. (23)

This is the representation of the cross product of two vectors using € - tensor notation.
Inthe same way, the scalar triple product of A, B, C can be written as
r=C.(AxB)
= &, CGA B, in view of equations (20) and (21).  ...... (24)

9.9. Examples of tensors in elasticity :
9.9.1 (i) Strain tensor :

When we apply some forces to a solid elastic body, the particles of that body undergo relative
displacements. That is, the configuration of the body changes or the body is in a ‘strained state’. The
ragid body translation and rotations do not produce any strain. :

For a mathematical description of the ‘Strain’ produced in the body, consider a rectangular.
carterian coordinate system (x', x2, x3). When the forces are applied to the body, each point of the -

body is subjected to a dispalcement vector § which is a function of the position vector

u, (x', x2, x%)
=ux (25)
Consider two adjacent points P (7) and Q (t+df) . Let 4(f) be the dispalcement suffered by

r= (x', x2, x3) (i.e.) u,

Pand a(f+df) correspondingly by Q. Let the new positions be p and Q' as shown in figure 1.

Figure 1.
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Then & (f+df) of the point Q may be written as

8 (F+dP) =u, (x' +dx’) i=1,23
NN
~u; (x') + o dx*

U (X +d¥)—u )~ g
or y; P : S e (26)
Py is a rank tensor being the gradient of the components of the vector i . so eqn. - (26) can

be written as
) (o

?E‘.— dx! = dx’ 1 zu++—i + ?E‘———J—

ox? 2iax! ox') \oxd ox')l e (27)

Sym;lr1etric ’ AntiSy‘lrnmetric
= dxi(ey+d) e (28)
_1fou v -
where % =3 ?3;+-(3—x—‘— =¢ L (29)
1(ou; Ou;

and %= 5 [&T‘gx‘f‘) =~ ¢ e (30)

With the antisymmetric tensor ¢;, a vector y, can be associated as
g = €x W e (31)
1

where ¥, = 5 €ijk ¢,j ...... (32)
Sofrom (28), ¢;dx’ =€, ¥ dx' S (33)

The RHS of 33 can bé ponsidered as the i th component of the vector product ¢ x d (vide

eqn. (23) which represents the displacement due to a rotation ¢ . Hence the part #; dx! of the

displacement of the point Q due to the ‘rigid body rotation’ will not contribute to the ‘strain’. Sointhe
RHS of equation (28), e; .dx is called ‘pure strain’ while the quantities e; constitute the components

of the ‘strain tensor’ given by

19
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o, 1(au, +auzj 1(@. +au3)
a2l &) 2(ad &
f(E2) 2.2
o = | 2\ a2 o 2\ &) | (34)
u 1[8u3+6u,) 1(au3+gj ouy
20l ") 2l e ox’ )

Itis easily seen that the ‘Strain tensor’ &, is a second rank symmetric tensor and has only six
lndependent components

Phliysical S|gn|f|cance of the components of the ‘strain tenso:’

Considera volume element dx' dx? dx3 in the shape of a rectangular parallelopiped ABCDEFG
as shown in the figure 2. : '

3

¢ B
: d?
. D - G
o) el : I
dx’ A ’
/E F
X Figure 2.

If each point of the body is subjected to a dispalcement va

dii (du,, du,, du,) is the corresponding dispalcement in the volume el
x'-direction alone is

du, _ﬂdx‘
ox!

rying from point.to point,
ement. The change in the

or change per unit length= —-

a, ou,
Thus P is the linear strain in the x' - direction. ifthen followsthatgx— and

arethe
ax3
inear strains in the x2 and

x® directions respectively. So the physical significance of the diagonal
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term in the ‘strain’ tensor (34) is that they represent ‘elongations’ or ‘linear strains’ along the three
; ‘rectangular axes x', x2, x8.

Next, we understand the significance of the off-diagonal elements of the strain tensor.
Consider the plane OABC alone of the parallelopiped and let it be deformed into a parallelogram

O AB'C’ by applying a tangential force parallel to CB and keeping OA fixed as shown in figure 3.

X
C (O B’
d‘”':; ,71' ’\l'
0 y X’

Figure 3,

The point C moves to C' and Bto B’ and all other points between AB and OC slide over from
rectangle to the parallelogram. This type of deformation is termed as ‘shear’ and is measured by

tan £COC’ equalto cc’ /0OC
. hear . CC' 0w, _ wsplacement in x'direction
(le) shearing strair:.= OC o&x®  Change in the x* coordinate

In this shearing strain, there is no deformation along the x2 - direction. The only other shearing
strain in which there is again no deformation along x? - direction is

AA’ _du, _ displacement in x’ direction

OA _ ox'  Change in the x' coordinate asshowninthefigure4. ... (36)
x3
.- 14
che B
o B
0 1 !

Figure 4.
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_ Ou;  Ou
But since shear is a scalar, the total shearing strain in x' x*- plane is ax—§ + a—;, Similarly

Ou,~  Ouy ou, Ou, . . . -‘
e + 5x2 and E%] + 5« are the total shearing strain components in x2 x3 and x' x2 - planes

respectively which are all twice the off-diagonal termsf.in the strain tensor.

9.9.2 (ii) Stress tensor : : o

The stress is defined as the internal force per unit area acting on a deformed body. The stress; -
may be directed normally or tangentially to the surfaces on which they act. If the deforming forces act
normally to a given area of an elastic medium, they produce pure elongations and in that case, the
stresses are called “tensile or normal stresses” and if the deforming forces act tangentially, ‘shearing
stresses’ are produced. '

In f,iQuré 2, consider the face OCDE of the parallelopiped in the x2x3 - plane. Leta component
F,, of the total force f act normal to the face area A, = dx2 dx®. Then the stress (a) acting normal
to this face is defined by ' ‘ .

oE
O =50
_ DA, )
In a similar manner, stresses normal to faces OABC and OEFA are defined respectively as”
oF, oF,

=—2 Gy = ——
02 "5n; and On =l
Thus the only ‘normal stresses’ acting on the faces of the volume element are 6,15 Gy, O33-
Next consider tangential forces acting onthe face OCDE, i.e., the forces acting along x2and x3
directions. Then the shearing stress in x? - direction acting on a plane perpendicular to the x'

oF,

direction is defined by ©12 = ;37] . . (37)

When the force is along x® - direction acting on the same face OCDE, the shearing stress o,

is givenby i = g% ...... (38)
Rl
~ (Note: OCDE plane is x? x° - plane. There are two axial directions namely x2 - axis and x° - axis. But
there is a unique normali.e., x' - axis. Thus there are two shearing stress components ,, and oy
as defined above) ‘
In a similar manner, for the other two planes also, two more pairs of shearing stress’ components

oF, oF,

i Oy =——=,0, = ——
canbe definedas Oz oA, 3 7A, | -
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oF, oF,

Gy = , Oy =—.
and %n2 =7 A, 3= 74,
So the total stress can be represented by a matrix as

Gy Oz On
T=|% %2 S»} .. (39)
G3; O3 Omn :
It can be 3hown that shearing stresses on mutually perpendicular planes are always equal
i.e., G}, = Gy, O3 = O3 andGy3 = O, Once again consider the parallelopiped (fig. 2) with sides dx',
dx2and dx®. Now for the volume element to be in static equilibrium, the angular accelaration vanishes
or the total torque must be zero. Or the balance of moments of forces requires that
(0,,dx? dx*) dx' = (o dx’ dx?)+dx? or 6, = 6,,- Similarly c); = 03, and o, =05 - (40)
Thus the stress matmix is symmietrical and needs ohly six independent components for its
complete specification.
Next we prove that the matrix

oF, 9F, = OF
oA, OA, OA,
T= | oF, 9F, OF
Tn T2 On|TIFA" GA, 0A,
Oy n 9n oF, 0F, 0F
8A, 0A, OA,

(F E E)

i
@
Z

is atensor.
Itis kriown that area is a vector quantity, the direction being considered along the normal. So

A, A,, A, which are already defined as areas must obey the transformation law of a vector.
i.e., A: =3y Aj ' e (42)

o (o )(oAa) 2,2 .
and 77 7|54, J\3A]) O 0AT oA T (43)
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which is the vector transformation law. (i.é.) 9A; | isavector

It is obvious that the force (F,,F,, F,)isavector. SoTin (41) should transform like a tensor of
order 2 since (41) is an open product of two vectors.

Thus the stress matrix (41) is a second order symmetric tensor with diagonal terms representing
‘normal stresses and the off - diagnal terms as ‘shearing or tangential’ stresses. '

9.10. Summary of the Lesson _

Basic definition of scalars and vectors are given. By considering some physical examples in
anisotropic media, the concept of a tensor has been introduced. Distinguishing between ‘general
tensors’and ‘cartesian tensors’ this lesson is devoted mainly to ‘cartesian tensors’ which are concerned
with linear orthogonal transformations.

By briefly explaining the linear orthogonal transfokmation,'cartesian tensor notation an
summation convention have been introduced and explained in detail. '

Classifying the cartesian tensors, transformation law as a definition of a tensor is given.
. Symmetry properties and aigebra of tensors have been explaned with exampels. The process of
contraction of a tensorin clearly given along with some propertion of of tensors.

, Special cartenian tensors such as kroncker tensor and epsilon tensor are expalnied along with
their properties.

Two specific examples of ‘Strain tensor and ‘Stress tensor in.elasticity are consideredgiving
their formation and the physical significances. B

9.11 Key terminology

* Scalars - Vectors - Tensors - Carterian tensors - Linear orthogonal transfermation - F}ee index
- Repeated index - Index change operator - rank of a tensor - Cantraction of a tensor - Symetric

tensor - Kronecker tensor - Epsilon tensor - Strain tensor - Stresatensor - Shear and normal stress

(Strain). ' ‘

9.12 Self - Assessment Questions ‘

1. Distinguish between ‘general’ and cartesian tensors. Explain the summation convention used
in tensors.

2. lIfthe law of transformation of a cartesian tensor is A; = a;; A;, work out the inverse _
transformations.

‘ 3. Define symmetric and antisymmetric tensors and show thatevery second order tensor can
be expressed as a sum of symmetric and antisymmetric tensors.
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4.  Explain multiplication of two tensors and contraction of a cartesian tensor. Contract the tensor ...
Ajum twice and show that the resultis a vector.

5. Whatare invariant tensors and explain Kronecker and explain tensors.
6. Explain <-tensor and how do you represent the cross product of two vectors using € tensor.
7 Define Kronecker and epsilon tensors and prove the following :

(i) S5ep =0 o (i) egEg = 28,

(il)) (Bim Bip +8ip Skem) Wik = Wonp ¥ Wpm
8.  Define stress and bring out the stress tensor of a defined body. Explain the physical significance.
9.  Thedisplacement of points in an elastically strained cubic crystal sample 1x1x1 cm® in size

are u, = (4x,+3x,-5x;)10™ cm
u, = (7xl —13‘x2‘+4x3)10"‘ cm

u; = (9%, —2x, +4x,)10™ cm
Find the small displacement tensor, strain tensor and rotation tensor.

9.13 Reference Books : < »
1.  PP.Gupta, RPS Yadavand GS Malik_‘Mathematica| Physics’ Kedarnath Ramnath, Meerut,
1980.

2. FA.Hinchey, * ‘Vectors and tensors for Engineers and Scientists’, Wiley Eastern Ltd., Delhi,
1976. '

3. H.Margenauand G.M.Murphy, ‘The Mathematics of Physica and Chemistry’, Affiliated
East-West Press Pvt. Ltd., New Delhi, 1956.

4. C.E.Weatherburn, ‘Riemannian Geometry and the tensor Calculus’, Cambridge University
Press, 1957. g



Unit-Hi
Lesson - 10

General Tensors

Objective of the Lesson :
> To define general tensors in a curvilinear space.
> To give laws of transformations of several kinds of tensors.

> To develop algebra of tensors and their properties. -

> To define line element and fundamental tensor in Riemannian space.

> To study the nature and usages of the fundamental tensors.

Structure of the lesson :
10.1 Introduction ‘
10.2 Transformation of Coordinates
10.3 Contravariant vector
10.4 Scalar invariants
| 10.5 Covariant vector
10.6 Tensors of second order
10.7 Tensors of any order N
10.8 Symmetric and‘skew-éymmetric tensors
10.9 Addition of two tensors
10.10 Outer or open product of two tensors
10.11 Contraction of a tensor
10.12 Inner product of two tensors
10.13 Quotient law
10.14 Fundamenta! tensor
10.15 Magnitude of a vector
10.16 Associate covariant and contravariant vectors
10.17 Problems

IRAl
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10.18 Summary of the lesson
10.19 Key Terminology

10.20 Self Assessment questions

10.1 Introduction :

it is seen in the last lesson about the cartesian tensors which are characterized by
linear orthogonal transformations with constant coefficients i.e., those among cartesian co-
ordinate system in Euclidean space. In this chapter we propose to generalise the cartesian
tensors applicable to more general type of spaces namely, curved spaces of which Euclidean
space is only a particular space.

The use of more general type of co-ordinates called oblique‘(non orthogonal) curvilinear
co-ordinates will lead to the general tensors, which are used in the formulation of the general
theory of relativity. -

10.2 Transformation of co-ordinates :

Consider a set of n single valued functions g'(x',x?,...x"),i=12,....n in an
n - dimensional space Vv, . If the functional determinant is not equal to zero, the system of
n equations

x' =g XK XY T 2
The equations (1) and (2) define a transformation of co-ordinates and they enable us
to pass from either system of co-ordinates to the other. '

Since the functions x' are independent it is to be noted that
&K _ 5 .
_5_)_(7_ = 51 = 1 for 1=)
_ = 0 for i#j -t (3)
called as Kronecker delta symbol. .

10.3 Contravariant Vector :

Firstly, we consider the infinitesimal displacement vector as an example of the
contravariant vector. . .
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Let P be a point of v, whose co-ordinates are x' in the one system and X' in the
other; and let Q be an adjacent point whose co-ordinates are x' +dx' in the former system
and X' +dx" in the latter. The two sets of differentials are, of course connected by the equations

5—1
dx'=—dx) = .
X e xJ (4)
Thus the infinitesimal displacement PQ, whose components in the co-ordinate system
x' are the differentials dx' is an example of a contravariant vector. lts componets in the co-

ordinate system %' are the differentials dx' and the componets in these two systems are
connected by the set of equations (4).

Generallzmg thls the definition of contravariant vector is given as follows. If two sets
of functions v’ and u (|_1 2,......n) are connected by the relations

wew X (5) (i=1,2,.........0)

ox!

the quantities u' are said to be the components of a contravariant vector in the co-

ordinate system x', while @' are the components of the same vector in the system x
10.4 Scalar invariants :

The term scalar invariant or scalar denotes any function which is not changed by
transformation of co-ordinates. If such a function is represented by A (x!,x? x") inthe

system x' and by A A x',x%,....x" in the system x' then A & x2,...X" =A(x',x2, .......... x"

The partial derivatives of this invariant with respect to the co-ordinates in the system

. CA
x' are the n functions A, = > T (6)

Its partial derivatives in the system %' are givenby A, = gi—A.

10.5 Covariant Vector :

We consider the gradient of scalar invariant function as an example of covariant vector
as follows. If A(x'x%,.......x") is an invariant functlon and correspondingly

- A (i‘,iz, ............... x") inthe x’ &x' systems respectively,
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. — /A oA &x*
he A== —r
then Tk o
. B ot
(or) A=A = (7)

The vector, whose components in the x’s are the partial derivatives A, , is called the

gradient of the scalar A, and is denoted briefly by grad A. The gradient, thus defined, is an
example of a covariant vector.

More generally, if v, are n functions of the x's and V, n functions of the X s connected
by the relations ‘

we say that the v, are the components of a covariant vector in the system x', and V,

are the components of the same vector in the ¥’ .

ugte It should be observed that the index of a covariant vector is written as a suoerscnpt
and that of a covariant vector as a subscript.

Theorem :

Ifthe sum u' v, is an invariant, and the quantities u' are the components of an arbitary
contravariant vector, then the quantities v, are the components of a covariant vector. Orif v,

are the components of an arbitary covariant vector, u' are the components of a contravariant
-vector. K

Proof :
Since the given sum is invariant we have

As the quantities u' are the components of the arbitrary contravariant vector, equation
(9) can be writtenas '
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u"yvi —ulvi= 0
u! v.ﬁ -v;|=0 10
or P j (10)

If this holds for an arbitrary contravariant vector, the coefficients of the quantities u’
‘must all be zero showing that v i are the. components of a covariant vector.

Similarly, for an arbitrary covariant vector, the theorem can be

proved.
- 10.6 Tensors of second order : |

Let &Y (i,j=12,.........n) be a set of n? functions of the variables x'. Also let A% be n?
functions.of the x'’s, connected with the former by equations of the form
—_ i oaxd
Al - Ak'%g—, (1) (i =1,2n)

Then the quantities A’ are said to be the components of a contravariant tensor of

$second order in the coordinate system x', and A’

are the components of the same tensor in
the system i . : '

A covariant tensor of the second order is such that its n? components A; in the system

x' are connected with its components A in any other system x' by equations of the form

— ax* ox! A |
e (12)
A mixed tensor of the second order has both covariant éhd cont

ravariant characteristics,
its components A!

in the X’s being connected with its components K} inthe X * by the relations

10.7 Tensors of any order :

Tensors of higher than the second order are similarl

y defined. A contravarianttensor.
of order k obeys the following law of transformation as
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{the no. of indicies for each component being k)

Similarly a covariant tensor of order m, whose components in any other system X'
are given by

(the no. c¢* indices for each component being m)

| Lastly, the n™* quantities A% k being the number of superscripts and m the number -
of subscripts, are the x-components of a mixed tensor of order k+m, provided its components

in any order system xi are given by

(for each component, the no. of contravariant indices being k and the no. of covariant
indices being m.) '
Note : A contravariant (or covariant) vector is a contravariant (or covariant) tensor of the first
order. The number of different indices denotes the order or rank of the tensor.

10.8 Symmetric and s!g_ew-symmettic tensors : .

I

The covariant tensor of the second order, whose components are A;;, is said to be

symmetric if. A; = A;; for all values of i and j; and similarly for a contravariant tensor of the
second order. A symmetric tensor of the second order has the number of different components

corresponding to different indices (off diagonal elements) as m 1 and the number

corresponding to a repeated index (diagonal elements) is n thus leading to the total number

n?-n

+n or f’ﬂqill A tensor of order higher than the second is

&

of different components as

said to the symmetric with respect to any two indices when two components, obtainable
from each other by interchanging these indices are equal.

A tensor is said to be anti or skew-symmetric with respect to two covariant or two
contravariant indices, when the two components obtained from each other by interchanging
the indices differ only in sign. Thus, a second order covariant tensor whose components are
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Ai,- is skew-symmetric if A; = -A; for all values of i and j. Consequently, A, =0 . Therefore,

except as regards sign, there are only ﬂ"?—l

different non-zero components.
10.9 Addition of two tensors :
The sum (or the difference) of two tensors of the same kind is a tensor of that kind.

Q: Showthatany tensor of the second order may be expressed as the sum of a symmetric
tensor and a skew-symmetric tensor.

Sol: The components A; of the given tensor can always be written as

| . 1
A =5(Aij+Aji)+'2'(Aij -A;)

symmetric skew-symmetric
Since the quantifi'es A;+A; are the components of a symmetric tensor (i.e.,
Ai+A; =A;+A; ) and similarly A, -A; are the components of a skew-syminetric tensor
(ie., A;~A; =-A,-A;), |
the result follows. |
10.10 Outer or open pIFOduct of two tensors :

The product of two tensors is a tensor whose order is the sum of the orders of the two
tensors. This tensor is called the open or outer product of the two tensors.

1]

Q_; Determine the nature and order of the open product of the two tensors Al and B, .

Sol: The open product of the two given tensors Al and B, is given by

' & 3 op)[ X =
(A’ By) = ( A“"J - B ] , , . .
] Y (Using the resoective transformations)
& & ‘\Bx
P OAJ R e o
Tmw e
B e
or 0= ——5—C” where Ci <A B, a:1C® =A** B,

f ¥
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This repreSehts the Iaw‘d'f transformation of a mixed tensor of order 3 (2 contravariant
and 1 covariant indices).

10.11 Contraction of a tensor :

Any mixed tensor may be contracted giving a tensor whose order is less by 2 than
that of the original tensor. The process of ‘Contraction’ consists in putting one of the covariant
indices equal to one of the contravariant and performing the summation indicated.

Q: Inhow many ways can tensor T* be contracted? By taking one way of contraction,
determine the nature and order of the resulting tensor.

Sol : The given 5th order mixed tensor T3, can be contracted in 6 ways and in each way
by putting a=r or s or t or b=r or s or t. Let us consider one way of contraction by putting a=r.

The law of transformation for the mixed tensor T® is

w _ Ox* " & K™ K =y
rst a B r s t Tlmn
: ox* ox® ox" ox* ox

Applyihg contraction process by pljt'ting a=r, wegetr

b axr axbii—l_a)—(m a-in
Fst ﬁu a,—([‘l axr axs axt

_o KX

=ap
- a.ip axs_\. 6x‘ ‘o Tlmv

_ o & & qup
67(‘3 ox® ox amn

. axr 65(-1 —>6il _ g|
& x' &
™

which shows the law of transformation of a mixed tensor of order 3 (one contravarient

and two covariant indices). T7, has‘r as the dummy (repeated) index and it will not contribute
~ to the order of the mixed tensor. Thus it represents a 3rd order mixed tensor (3 distinct
indices). ‘ ’
10.12 Compounding or inner product of two tensors :

L L - C
Two tensors may be ‘Compounded’ by first forming their outer product and then
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e - contracting it with respect to an index of the one with an index of opposite character of the
other. The result is called the inner product of two tensors. Its order is less by 2 than the sum
of the orders of the original tensors.

Thus the tensors A} and 13,k may be compounded in the above manner in 3 different
hways giving the tensors. ‘
Bl AB,, AB
which are 3rd order mixed tensors.
Note : Putting k =1or m or i=j is forbidden as per the definition of the inner product

10 13 Quotient Law :

If A7’ are functions of the x** and A7;° function of the X* such that u'A®;° and
T A are components of a tensor in the coordinate systems xi and x' respectively and

when u'and u' are components of an arbitray contravariant vector in these systems, then
- the given functions are components of a tensor of the type as indicated by the indices.

_ , e L& & ox™ ox"
Proof : From the given data, if follows that G' A = u' AP~ ox? " ax o o noting

thatiis a dummy index.
Xi y
In the RHS expression, we may put u' = Py T asitis given as arbitray contravaniant
vector.
Then, since the equations are true for an arbitrary contravaniant vector, the coefficients
of 7'in the two members are equal. Thus we have equations expressing that the A’ are
components of a tensor of the type as indicated by the indices.

Note : The theorem in which equations 9 and 10 are invblved is considered to be the
particular case of the quotient law.

10.14 Fundamental tensor

B W

The distance ds between adjacent points whose rectangular cartesian co- ordmates‘
are (x,y,z) and (x + dx, y +dy, z + dz) is given by

ds? = dx? + dy? + dz2

More generally, for any system of oblique curvilinear co-ordinates U, V, W, we have
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ds? = adu® + bdv? + cdw? + 2f dvdw + 2g dw du + 2h du dv

where a, b, ¢, f, g, h, are functions of the co-ordinates. Extending this concept to
space of n dimensions, the infinimitesimal distance ds between the adjacent points,
xiand x' + dx' (i = 1,2... n)is given by the relation
ds?=g, dx'dx (i,j=1,2...n) e — (17)
where the coefficients g, are functions of the co-ordinates x. The quadratic differential
form in the R.H.S. of (17) is called a Riemannian metric or line element. If g; = 0 then the

space in said to be a Riemannian space. In particular, if g; ‘s are all independent of x|, the
space is Euclidian.

Since the diffrentials dx are components of a contravariant vector and the ds? is from
its nature a scalar invariant, the functions g, must be the components of a covariant tensor of
second order. This tensor is called the fundamental covariant tensor and its reciprocal tensor
g'is called the fundamental contravarient tensor. If the value of Ig,l is denoted by g, then the

determinant Ig'l is equal to 1/g. Further g; g =8f

Q_: Inthe Riemannian metric, show that the functions g, are the components of a symmetric
covariant tensor of order two.

Soln. : We know tha the Riemannian metric given by

ds? = g; dx' dx’ (i,j=1,2... n)

is a scalar invariant and hence it follows that

g; dx' dx! =g, dX*dX® = Bay Pty dx’

As the differentials are the components of contravariant vector, so by virtue of the
a)-(a 6)—(11

8x' -‘XJ g‘h ----------- (1 9)

quotient law, we have g =

whnch shows that g, is a covariant tensor of order 2. From equation (1 7) itis obvious
that : _ ‘ .

2= gidxd¥ = g d¥dx e (20}
which shows that g, is a symmetric tensor.

10.15 Magnitude of a vector :

Equation (17) can be written as -,
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dx' dx’ , '
g; —d—_ds__ - (21)

which can be understood that (L—xs are the components of a unit contravariant vector

and equation 21 as the scalar product of the unit vector with itself.
By analogy with equation 21, we define the Iength or magnitude u of any contravariant

vector whose components are u' by equation w’ = 8i; TR L — (22)

Slmllarly, the magnitude v of a covariant vector, whose components are v, is defined
by vi=glv v i e (23)
10.16 Associate covariant -and contravariant vectors

The vector g, ui is a covariant vector which is said to be associate to u' by means of the
fundamental tensor. It is usually denoted by u. Thus u; =g; W e (24)

Similarly, the vector v' defined by |

vi=glv, e (25)

is the contravaiant vector associate to v, by means of the fundamental tensor

Thus the magnitude u of any contravariant vector as given in equation 22 can be written
as

u’ =g u ul = (85 u')u’

u; w by virtue of equation (24). - (26)

Scalar (Compounding a corviant vector with its contravaiant part).

It is convenient to refer to u' and u, as the contravariant and covaraint components
respectlvely of one and the same vector {;. Equation (26), can also be written in the vector

notation as 1.4 = u® = y,u’ = giju w = gly, u;

Thus we can bring, the connection between vector and tensor notations by defining
the scalar product of two vectors @ and V as

A A

F=giu'v =y vi=u'v, = uv Cos - (27)

where ¢ is the angle between the two vectors @ and VG
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iy il
giu v guv

O = =
r cosd - ‘/gij o \/ g NI

The condiﬁon of orthogonality of the two vectors @ and § is ¢ . ¥ = 0. whichis
equivalentto g u'v'= 0. eeeeeeeeee (29)

It 3 isaunitvector,then . g =1o0r
giu'n’ =1 R (30)

Note : 1) The process of obtaining the associate vector by compounding with one of the
fundamental tensors is referred to as lowering the superscript, or ‘raising’ the subscript.

Ex : g;u’'=u, (lowering the superscript)

g u,=u’ (raising the subscript)

2) By compounding any tensor with the fundamental tensor, the base remains unaltered
while the position of the index is changed :

Ex: In g; w =u,, the result has the same base u and the superscript has changed to
subscript. But, if A, is not a fundamental tensor, A, U = B, but can not be u,

10.17 Problems :

1. If 6 is the inclination of the vectors § and v show that

(8hi 8j — B &) - (" u' v/ v¥)
h i

sin’@ = T
EhiBj U u V'vY)

Soln : Now the RHS of the problem

& u Ui) (gjk v v¥) %.:(gl1k u Vk)(gij uiVj)
(8hi u" u') (8k vivh)

2.2 . .
u‘v® —(uvcoséd) (uvcosd) . ) .
= N since g, u"u = u? and g, u"v= uv cos ¢
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2

(l cos H) P

= 2

U \4

- Hence the result.

Show that for a rectangular system of coordinates the raising and lowering of suffix

‘leaves the components unaltered in three dimensional space.

Soln_: We have in the rectangular, coordinate system (Cartesian coordinate system), the -
line element (square of the infinitesimal vector) as glven by :

ds? =dx” +dx? +dx* in 3-dimensional Space. - @1)

wherex'=x, x2=y; x3=
Comparing (31) with the general line element (21).

Wehaveg,, = gZé =g, =1andg,=9,, =9, =0

8 8> & |1 O
Lg =8y 8n Bnl =0 1.0 =1
g3 832 8 0 01
We thus-have

n _ Cofactorof g, ing _ 1_ l
g g 1
Similarly g2 =g® =

Which follows that g; = g

Thus the raising or lowering of suffix leaves the componenfs ofa tensor unaltered in

the rectangular coordinate system.

Note :- There is no difference between contravarlant tensor or covariant tensor in the
cartesian coordinate systems as there is no distinction between fundamental contravariant

orcovariant tensors.

3.
- Soln ;- Consider a symmetry property of a

Show that the symmetry properties of a tensor.are invariant.
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tensor as Ay = Ay Then we have

= Aji -

to show that A,

As per definition, it follows that

_at ot o
& & &

afiy

_at ot o0
& & &

and Ay afy

o o o

ral T =T
or also = a0 ok

A afly

as a, B, y are dummy or repeated indices.

As we have considered Az, = A, , from (1) and (2), it is obvious that A, = A

which proves the invariant property of the symmetry property.

4.

If A; is a skew-symmetric tensor, show that (B} B + B Bi) A, = 0.

Soln ;: From the given problem,

5.

Soln :

(B, B} +B} B)) A; = (B! B +B! B}

or  2(B,B}+B,B))A, =0
Hence the resyit.
Show that:

(i) Ay B*® = A B,

(i) A; BY = A!B}
(i) We know that

AnB = gaigﬂj Aij

)A; - iand jare repeated indices

-+ Ay is skew-symmetric
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af  _ ai B

S Agg B Loi g 8pi gh AY B;;

= (84 gm A"y (8 gﬁj Bij)

(gQli Agx) (gm» B?)
oAl _ AuB

ey, . l}

(i) Weknowthat A, = g Al

and B = g.ia BZ

Epi gja A? B:z
53y APBL = A" BY

. kj
.. A;BY

i

6. Consider, in E,, the tensor A; whose covariant components relative to a cartesian
coordinate system (x,y) are A, = x%, A;, = Ay = xy; A, = y?
Calculate the components in the coordinate system (r,8) which is defined as
X =rcos0, y=rsin0.

Saln :

Let _,

x'=x ;x’=y
X'=r ;Xx’=0f

From the transformation between the coordinate system, (i:e.,) x =rcos®, y=rsin6

ax!  ox!
E a2l Cos8 -rSin@ @
we have | ox? ox2 | |Sin® rCos®

& &

The law of transformation of a covariant tensor is

14)
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a b
—|_| —ax iax_'-lxab
% &%’
ox' ox' ox? ox’ ox' ox? ox? !
=—i—_—'_A”+__i_—' 22+-—i'—.'A|2+—T-—.A2| ————— (3)
X X & & & & x o
— ax"ax' ox? ox? ox' ox? ox? o'
Acmattm e T ww wa

= Cosé?.Cosé’.(rCosﬂ)z+(Sin«9)(Sin€)(r«Sin€)2+2C0s€.Sim9(rCos€)(rSim9) from (2)
= r? (Cos?@+Sin?4)* = r’

Since A,, = A, =xy=r’Sin0Cos#,
— ox' ox! ox? ox? o' ox? ‘axz ox'

R R <
="—r Sin#.Cos.(rCos#)* +(r Sin#Cos)(rSin 8)? +1Cos? 0.12 SinfCos8 — rSin® 4.r* SindCosé

=0 = KZI '
Lastly,
A,, = (-1 Siné)’ (rCos8)’ +(r Cos#)? (rSin#)? +r’Sin#Cos@.r* Sin#Cosd — r’ Sin HCosd.r’SinfCos#
=0 , ‘
— 20
A.) =
So, (Ay) ( 0 0}

7. Transform the line element  ds? = dx? +'(.iy2 +dz? into spherical polar coordinates and find
the volume element.

Soln: The transformation equations from the cartesian to polar coordinates are
x=rSin8Cosg, y=rSin6Sing, z=rCosf -—==(1)
If a point (x',x?,x*) in cartesian system becomes (x',x2,x°) in polar system,
then «x' = x, x*=y, xX’=z
-)ZI = r’ - iz =9’ i3/=’¢

From the given line element, the fundamental tensor is
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1 00
g4={0 1 0| ————- @
0 01 '

The law of transformation of g;; is

o e
B = E%“— 8
_ " ox!
- 8 =—6K' _6i' Bij

. axl axl . aXZ:aXZ ax3 6X3
=ai| ail g”+&l ail g22+3fl ail g33 -

in view of the vanshing elements in g; tensor (2)

(8] (23]

= (Sin8Cos ) + (Sin8Sing)? + (CosB)? from (1)
=1

- Similarly
2 2 2 .
_ ox oy oz
== 1+ =1 .1+ —1.1
82 (ae) +(ae) +(69)
= (rCos8Cos¢)”.| + (rCos8Sin¢)’.1+ (-rSin 6)’.1
=r2
| — ax ) Oyz EAN Tar 2
and 83 = (—) +[—] +(—) =r*Sin“0
7 a) T (ae) o
o
Further, g2 =§E 8

ox' ox' ox? x> x> ox’
=7 -1+ 7 7,.]-0- 7 ‘2.1
&' ox° ox' &%’ ox' &

in view of (2)
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= (Sin®Cos¢).(rCos@Cos ) + (Sin6Sin ¢).(rCosOSin$) + CosO (~rSin6)

Similarly, 25 =0 = gy
sds = 1.(dr)* + r2(d@)? + r’Sin20.(dg)? -—-—--- ('3)
is the required line element in polar coordinates.
Now  (dx)? +(dy)? +(dz)’ = ds* = (ds)* = (1.dr)* +(rd8)’ +(rSinddg)’
- The volume element dx dy dz can be expressed in spherical polar coordinates as

dxdydz = (1.dr) (rd0) (rSin0d¢)
= r’Sin6drdod¢

8. Show that the velocity and acceleration at any point are contravariant vectors.

Solution :- Let «xi(t) be the coordinate as a function of time of & moving particie.
Then the velocity component is
dx'
V= e (
d 0

If the coordinate system from x' is changed to <, then

) i i qT) LI
NI S S S v R @)
dt ox! dt ox’
whiép shows that the velocity components obey the law of transformation of a
pontravariant vector.

Taking the time denvat:ve of (2), it follows that
dV' 6x' dV’
a0 Tt A

Here, a subtle difference in understanding eq - (2) is necessary. The coordinates .

xt in %xt— are the coordinates of a particle in motion, while the coefficients ) only

denote a relation between two fixed coordinate systems, which is independent of time.
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Thus eq - (3) gives a law of transformation of a contravariant vector %— (i.e.,) the

acceleration.

9. Find the components of a vector in polar coordinates whose contravariant
componenets in cartesian system are X and y in aV, space.

§,Q!ﬂ_ Let x' = x, | x'=y

and A' =%, AT =§

We have the transformation

x =1CosH, y =rSin6
T 2)
or r’=xi+y% 0 = tan”' L )
X

From the law of transformation of a contravariant vector, we have

L& .
A= -a‘x*;AJ (l,]—l,z) ——————— (3)

- _ &l ) &l ail
[_— b 20 I Pl 2
Now A_axjA_ax'A+6x2A

It
|
b
+
|
<
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=<_3£x 09
ox (7y

—Lx + ——y from(2)
r?

Now from (2)

dx _ 6x£+gx_§£ = tCosf-1fSind —-—-(6)

X=-—m = —.
Codt o dt 064 dt

% = FCos0-216Sin0-r6’Cos8-rSinG ~ ———=(7)
y = iSin+rHCosH e (8)
§ = £Sin®+2i6Cos®-r6”Sin®+rHCosO ——— (9)

Making use of (7) and (9) along with (2),

XX+yY gives i-ré?
r

X X . v 2

and =35> gives 9+; ro

Hence the required components in polar coordinates are
A' = {-r6?

KZ

54216
r

10. Consider a coordinate system (u, v, w) which is related to the cartesian coordinates
by x=vw, y=uw, z=uv.

Obtain the metric in terms of u, v, w.

Sglution - We know the line element and the corresponding metnc tensor as
ds? = dx?+dy’ +dz’
1 00
———————— @)
and g; =|0 1 0
0 0 1
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We take

| 2 3
X =X, X =y, Xx =z

<l _ F2 <3
X =u, X"=v,X=w, @)

X=Vw, y =uw, z =uv|

We know the law of transformation of the fundamental covariant tensor as
- &t

8 ~ 5 E L

In view of the metric tensor in (1), we can write
- ox' ox' ot ooxt . oxt oox?
gn = ot o

X' X ox' X ox oX
=0+w’+v? from (2)

By cyclic symmetry, we can have

_g—zz = I.lz +W2

— 2
833 = V2+U'

Similarly,
_ ox' ox' ox° ox° ox’ ox?
8 T — 2'l+ —1i ,,:'l+ 1 2"
ox Ox ox' X X OX
=0+0+wvu

Also g,, =wv and g, = uw by cyclic symmetry.

Therefore the line element in (u v w) system is given by

o =g AR d (jeL23) - ‘
view? uv uw
T = uv u+w? VW S
Where 8i 2,32
uw vw u-+v

and [g,,} =4u’viw?,
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10.18 Suinmary of the lesson :

In the general curvilinear coordinate system, definitions of contravariant, covariant
and mixed tensors of various orders have been defined by giving the laws of transforma-
tions and examples. Products of tensors and contraction of a tensor are defined.

The line element and the fundamental tensor are defined. The importance of the
fundamental tensor for raising or lowering the indices is stressed Several examples are
worked for better understandlng

Some simple rules regarding the indices of tensors are noteworthy.

(i) If an index appears only once in any term, it has a definite value - any value
between 1 and n if n-dimensional space is considered. Such an index is called a free
index. This index should match in all terms throughout the equation. This means thatif a
free index occurs as a contravariant index in one term, it should occur as a contravariant.
index in each term of the equation.

(i) An index which is repeated and over which summation is implied is called a

_ dummy index. !t can be replaced by any other index which does not appear in the same

term. This index may occur only in some of the terms of an equation. When it occurs ina

term, it should occur twice, once in a contravariant position and once in a covariant posi-
tion. ’

(iii) No index should occur more than twice in any term.-

(iv) When a coordinate differential such as g occurs in aterm, iis to be regarded
as a contravariant index if 5 occurs in the numerator and as a covariant index if it occurs

a general and contravariantis to be treated as covariant index.

10.19 Key terminology

General tensors, Contravariant tensors, Scalar Invariant, covariant and mixed ten-
sors, free index, dummy index, open product, inner product, contraction, Riemannian space,
fundamental tensor, Associate Contravariant and covariant vectors.
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10.20 Self Assessment questions

(1) In a Euclidean manifold E,, the covariant components in an orthogonal cartesian |
system are :

Ay = x?, A, =Ay = 0,A, = y2

Obtain the components of the same vector in the parabolic coordinate system

(u, v) given by x =2 3y =

2
(2) Afunction A (p,q,r,s) of coordinates x' transforms to another system of coordinates
as )
- oxP &x° & &
A (abed) = A(p,q,r,
(abced) = o o o (p,q,T,8)

Is it atensor ? If so, give its nature and rank.

(3) If B is an arbitary covariant tensor and A(p,i) B; = C; where C; is a tensor, then
prove that A(p,i) is a mixed tensor.

(4) State the law of transformation of a mixed tensor. Show, by example, how the trans-“
formation is affected when the tensor is subjected to a contraction.

(5) If A, is an anti symmetric tensor and S; is a symmetric tensor, find whether are not
any of the following tensors is anti symmetric or symmetric ?

(i) Ay Ay (i) Ay Sy (iii) Sy Sy (iv) Ay Sy -S; A4 »

(6) Transform ds? = dx?+dy? +dz? into cylindrical coordinates.

(7) InV,- space, the components of a contravariant vector are:x, y. Transform them into
polar coordinates.”

/(8) Show that A, is a tensor if its inner product with an arbitrary mixed tensor clisa
tensor. '
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Unit III
Lesson — 11

CHRISTOFFEL SYMBOLS

Objectives of the Lesson:

» To introduce the concept of symbols
To explain the notation and properties of the symbols.
To obtain the law of transformation of the symbols.

To give precautionary notes on the calculation of the symbols.

YV V V V

To work out some important examples.

Structure of the Lesson:

11.1 Introduction

11.2  Christoffel symbols.

11.3 Derivative of g

11.4 Laws of transformation of the 3 — index symbols.

11.5 Transformation laws of velocity and acceleration vectors.
11.6 Computation of Christoffel symbols.

11.7 Summary

11.8 Key Terminology

11.9 Self — assessment questions

11.10 Reference Books

11.1 Introduction:

As the fundamental tensor is in general a function of the coordinates, its partial
derivatives and their combinations often appear in the scientific problems.

The derivatives of a tensor with respect to the coordinate system are not in general
tensors. In order to construct differential calculus for tensors, it is necessary to define an
operation of differentiation in such a way that derivative of a tensor is another tensor. This task is
most easily accomplished in terms of certain combinations of the partial derivatives of the metric

tensor. Grouping of such derivatives are denoted by symbols called Christoffel symbols.
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11.2 Christoffel symbols:

*

. k
Special symbols [k, ij] and {} called the Christoffel symbols of the first and second kinds
1)

(* These can also be denoted as [ij, k] and F;‘ respectively)

1

. L1 (08 g gy
b k,ij]= = | 2%+ =% - 1
are given by [k, 1j] > (8}(' ) oxk D
k
{}=ﬁmm ---------- 2
y

The expression on the right of (2) being summed with respect to the repeated index h. The
three indices in Christoffel symbol of first kind are considered to be covariant type indices. In the

symbol of the second kind, the upper index is to be regarded as contravariant type index and the

lower one as covariant type index.
From their definition, it follows that both functions are symmetric in the indices i and j and not
with any other pair of indices.

From equation (1), it can also be seen that

0g; e
= = [l ]+ [, k] oo 3)
ox
Multiplying equation (2) with gy on both sides,
we have
k _ kh 1= on cerrq e
gik i =gkg [hy]= oy [h,y]=[L §] -------m-- “4)

11.3 Derivative of gij:

Q: Express the partial derivative of the fundamental contravariant tensor in terms of the

Christoffel symbols of the second kind.

ik : (k
Show that o _ =_ g ! g
ox’ hj hj

Solution: we know the identity

g gn= 0] e (5)

Differentiating equation (5) with respect to xJ, we have

OR

gih hi agih

— t&n

P L s [Uis]
oxi Mo "9 T o i21f
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Multiplying by g*, and summing with respect to 1,
we have
Sk og" _ Ik ih 0

ag ik

ox’

or =— g% " ([h, j]+[L, hj]) from equation (3)

_ {i } b {k } f .
g . g ) rom equation (2)
lj hj

Replacing the dummy index I by h we may write the relation
a g ik 1 i k

j == ghk (8 " (O T (6)
0x hj hj

Note: Having come to this extent, it is very important to consolidate our ideas about the

fundamental tensor.
In the previous lesson, while dealing with associate vectors, it has been mentioned that
giv =
which means that g u' is a covariant vector associate to u' by means of the fundamental tensor.
Or, it can be understood that g;; is used to lower the index j in W toiinu. Or it can also be
viewed that the inner product of the fundamental tensor with a tensor results in the tensor with the

same base and indices balanced.

Example:

Zij U=y base: u

gi Al = A base: A

ik — mik )

g’ B, = B base: B

kh [, i k :
g [h,ij]=+<_. base: Christoffel symbol
Y

I y .

g y..¢ = [k 1] base: Christoffel symbol.
y

1 ki
But g™ {h} cannot be further simplified giving { }because there is no such Christoffel symbol
i J

defined. Further, inner products with other than fundamental tensor cannot exhibit such property

that the result also will have the same base.
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Example: Aj; W #u; butitis Ajj u =B,
Where B is a base different from u.
0 i
Q: Prove that — log \/E =9
ox’ ij
Solution: Since gg™* is the cofactor of g in the determinant g, from the rule of differentiating a

determinant, we have

og i OZi ik i C
—= =gg™ =5 =9o™ [k, ij] +[1, k
o 88 o &8 [k, 1]+ [i, k]

i k i
=g<.¢tgy,..r =281.. whereg=|gij|
ij kj ij

11.4 Laws of transformation of the 3 —index symbols:

Q: Express the second derivatives of the x’s with respect to the X’s in terms of their first
derivatives and the Christoffel symbols for both systems of coordinates.
OR
Obtain the law of transformation of the Christoffel symbols
OR
Show that the Christoffel symbols do not denote components of a tensor.
Solution: On differentiating the law of transformation
ox* ox°
ox' Ox

gij = Eab (8)

with respect to x*, we have

0g;  0Og, Ox" ox" oOx° o°x* ox" ox* o*x°

= A _ + g, . g —— : 9
X x° X o K Ukt o0 ok xRk )
By cyclic permutation of the indices 1, j, k, we further have
0g; og,. ox° ox° ox* o’x"  ox° ox" 0°x°

J:< _ gt;c et e P B (10)

) ox" ox' Ox* oOx ox'0x' Ox ox' OX“0x
and
agki agca aXC axa aXb azxc aXa 6XC azxa

= Eea (11)

| = 4o i i
% ox® xF X % Uaxox) ox | U oxF oxiox)
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since a, b, ¢ are dummy indices and the fundamental tensor is symmetric the combination of the

1
equations (i.e) E [10+ 11 —9] gives

a_~ o a_ a b c a 2_b
1[ g, 08, gu] 1 (8gbc , 08 _8gab] ox* 0x° Ox xt Ox

2w T &) 2le k' o)X X xF | UeRE oxen)
with the understanding that the last term of (9) and the second term of (11), and similarly the
second term of (10) and the last term of (11) get cancelled.
By the definition of Christoffel symbols, (12) takes the form
axa 8xb ox* ‘g b&xa 82.be

ox' ox' ox* T ox* ox'ox

This is the law of transformation of Christoffel symbols of the first kind connecting the functions

[k, i = [c. ab]

(13)

in X' and x' systems. But for the presence of the last term, (13) would have represented the law
of transformation of a third rank covariant tensor.

On multiplying the two sides of the equation (13) by the corresponding sides of the identity

_ii Ox° dh ox"
= 14
& ot (14)
and summing with respect to the repeated indices, we obtain
——1_, Ox° ox* ox” 0x¢ ox" ox* ox* o*x°
k,l. k Y& , b : : dh . dh : : 15
[ J]g &l [C a] ail ai"] aik th g gab & 8Xh &k &1&] ( )
1] ox¢ ox* ox® o°x"
=[c, b : : c dh+ . dhé'a : :
{ij} & O e TR R
ox* ox° o*x"
= ¢%[c, ab . -
gl ]ai‘ i B e i
a b 2,b
_Jd 8Xl ax. . 5 a.x |
ab) ox' oOx’ Ox'0X’
d a b 2 d
= Ox* ox° | Ox° (16)
ab] ox' ox’ Ox'ox’

h

Multiplying this equation by — and summing with respect to d, we get
X

h| _fd]oxt o &x" | ox' &' 0
ij ab] ox' ox' ox!  ox'ox! ox¢
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This is the law of transformation of Christoffel symbols of the second kind and the occurrence of
the last term in (17) shows that these functions are not components of a tensor. Or in the absence
of the last term, it would have represented the law of transformation of a mixed tensor of order 3

(one contravariant and 2 covariant indices)

Note:

(1) Equation (14) is an obvious form of the law of transformation of the fundamental
contravariant tensor. We know that
glk _ ox' ox* geh
ox° ox"
_pox® ox* x| ox" ch
= g
ox' ox' ox° ox"
&k
A
ox
_ " gl
ox"

(i1) In the absence of the last term in (13) and (17) they behave as the laws of

or

transformations of respective tensors. This is the reason why the indices in the
Christoffel symbols are called covariant type and contravariant types.

(ii1) Equation (16), expressing second derivatives of x’s with respect to X’s in terms of
Christoffel symbols and the first order derivatives, is as such important in further
applications.

(iv) In every equation with tensor formalism, to check the correctness, balancing of the
indices on both sides and in every term must be satisfied. This can be better
understood if we look at equation (17).

On the left hand side of (17), all the indices are in the bar coordinate system and h appears as
contravariant type and i, j as covariant type indices. On the right hand side, in the first term, a, b,
d are repeated indices on which the summation is implied and there after the repeated indices
loose their significance. Thus the left out indices are h contravariant and i and j covariant in the
bar coordinate system. Similarly in the second term, d being the repeated index, we are left with
h contravariant and i1 and j as covariant is the bar coordinate system. Thus the balancing is

satisfied.
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1 i
Q: If g; and a;; are components of two symmetric covariant tensors and {'k and " are the
JXJ, X,

corresponding Christoffel symbols of the second kind, prove that the quantities
1 1 . . . . . .
{‘ } - { } are the components of a mixed tensor, i being an index of contravariance and j
ik, UkJ,
and k indices of covariance.
. : i i
Solution: It is given that g;; and a;; are two different fundamental tensors. So {k} and {k}
J X,
are different Christoffel symbols with g; and a;; fundamental tensors respectively. Writing the

laws of transformation of these symbols, we have

jk
g

mn

P ] e x| ok
X X ox! ikt ox!

similarly,

ik

i1 ] x| % &
S X okt x| axiex* ox!

i i 1 1 ox™ Ox" OX'
or - = - - — —
jk jk mnj  |[mnj | ox' ox* ox'
g a
i i
Which reveals that the quantities 1 . - " are components of a third order mixed tensor,

jk ]
g

mn

i being contravariant and j, k being covariant indices.

11.5 Transformation laws of velocity and acceleration vectors:

Q: Bring out the transformation laws for the velocity and acceleration vectors. Compare the

components of these vectors with those in the cartesian coordinate system.
i

P . . X .
Solution: It x' is the given coordinate system, then F are the components of the velocity

vector. Further,
dx' _ ox' dx“ _ ox' e
dt ox* dt ox“”

i

u =

)

where u” are the velocity components in the X' coordinate system. Thus
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i
u'= u“

o

shows the law of

transformation of a contravariant velocity vector. Again if u' are the components of a velocity

i

. u .
vector, then a' = d_ are the components of acceleration vector.
t

0 du _dfX u” from (1)
dt dt | ox“
_ x! & - ox' du”
ox“ox”  dt ox® dt

2)

Substituting the corresponding expression for the second order derivatives in (2) in terms of

Christoffel symbols and first order derivatives, we have

do' [y |ax_[i
dt aff| ox” |ab
_ 7_ —a —f ox'
= u’u
aof ox”
Ldui {i } . b
or —t u'u
t ab

, . du i
ifweputa'= — + u
dt ab

{

b
u

the above equation reduces to

“4)

Y
ap

i

ox" _,
ﬁa

|

dt

u

[’
u”
dt

62(1

ox’

&

u

ox'
6?7

ox* ox° | dx” _, N ox' du”
o= ox” !

i
ab

dt

]+

ox' du”

aia

dt

(the repeated index a in the last term is replaced by )

which shows the law of transformation of a contravariant acceleration vector.

In the Cartesian coordinate system, the equation (1) still holds good for the transformation as

well as the components of a vector. However in the case of the components of the acceleration

vector, they are represented by equation (3). In cartesian coordinate system, the fundamental

tensor is nothing but a unit matrix and hence Christoffel symbols vanish.

i

. i u L. . .
equation (3),a' = ? only which is true in the Cartesian system.

In such a case in
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11.6 Computation of Christoffel symbols:

Q: Find the Christoffel symbols corresponding to the line element
ds> =dr* +r* d0* +r’ sin’0 . d¢*
Solution:  we have
ds*=dr* +r* d0* + 1’ sin®0 . d¢’

where the gj; tensor in this spherical polar coordinate system is

1 0 0
gi=|0 > 0 and | g |=g= * sin20.
0 0 r’sin®@
minor of r*sin’ @
Now g'! = gu _ LAY
g rsin” @
,, minorof g,, r’sin’ @ 1
= =75~ 5 and
g r'sin“ 6 r
;;  minorof g, r’
= = 7y = = g and the rest of the components of the
g r’ sin r° sin

contravariant fundamental tensor vanish.
Letusputx' =r,x’=0,x = ¢
It is given that the non-vanishing components of g are g, = 1, g» = 1%, g3 =1° sin’0.
In formulating the non-vanishing components of the Christoffel symbols, we follow accordingly.
a) Since g;j = 0 for i # j, all Christoffel symbols with different indices vanish.
b) Since g;; =1 (constant), all the Christoffel symbols with 1 index repeated, vanish.
¢) When gy = > which is a function of x', all the Christoffel symbols vanish except index
being 1. That is, the non-vanishing symbols are [ 1, 22] and [2, 22].
d) When we consider g3; = * sin’0 which is a function of x' and x*, all the symbols vanish except
these with ‘3’ index repeated and the third index as either 1 or 2. i.e., the non-vanishing symbols
are [1, 33], [3, 13], [2, 33] and [3, 23].

Thus out of 3° = 27 symbols, by symmetry property, they will be reduced to 18 independent
symbols of which 12 are vanishing and the six non-vanishing elements are

[122]= 1 (0+0—8g—212j -
2 ox

2.12]= L 0+ag—212—0 LI S
2 Ox 2
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[1,33]= l 0+0 8g313 = —l M = —r5sin’0
2 19).9 2 or
0
[3,13]= % (O+ 6g313 Oj =rsin“0
X

6 2 2.2
[2,33] = l 0+O—g—323 =—l. M =—’sinf cosd and
2 ox 2 06

0
[3,23]= l g—323 =1’ sin6 coso.
2\ 0x

The second kind of Christoffel symbols having non zero values are

1 .
22} =g[j,22]=¢'"[1,22] only =1 (-1) = —r

2 2 1 1
0, 121 = ¢ [2,12]only= —.r= —
{12} g7 [, 12]1=¢7[ ] only 2 r .
1
{3 3} g [j, 33] = g''[1,33] only = 1.(— rsin?0) = — r sin’0
3 3j 1 1
i, 13]=g”[3,13] only =———— . 1sin’0 = —
{13} g L. B1=g713.13] only r’sin’ @ r
2 45,331 =g [2,33 1—1 ? 5inf cos® = —sind cosd and
33 =g [J ] [, ]ony—r—z.—r S1INY COSY = —SINVU COS an
3
=g¥[j, 23] =¢"[3,23] only——1 > .17 sind cos® = cot 0.
23 r’sin’ @

Note: For a general line element in V3, since all the elements gj; are, in general, functions of
the coordinates, all the 3’ = 27 elements will be present. In view of the symmetry nature of
the symbols, the 18 independent elements can be represented by means of three upper

triangular forms of matrices in the following way.

[1,11] [1,12] [1,13] 2,111 [2,12] [2,13] 13,111 [3,12] [3,13]
[1,22] [1,23] [2,22] [2,23] [3,22] [3,23]
[1,33] [2,33] 13, 33]

From these ordered forms it is easy or methodical to arrive at the non-vanishing symbols

depending upon the nature of the fundamental tensor on hand.
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Q: From the above problem, obtain the spherical polar components from the general definition of

the acceleration vector

] e a
dt’ jk| dt dt

(1,j,k=1,2,3)

Solution: From the non zero three index symbols already derived in the above problem, the

components of the acceleration vector are

2.1 1 j k
a‘=dX £ dx’ dx Gk=1.2.3)
dt? jk| dt dt
o dr [1]dodo (1] dg dg
or a=—+ — — t —_—
dt? |22 dt dt 33| dt dt

2 2 2
= E —r [ﬁj — 15in20 (%j
dt? dt dt

2 2 2
Againae=d9+ g%Jr %%
dt? 12| dt dt 33| dt dt
2 2
= d ;9 lg% — sin0O cosO (%j
dt r dt dt dt
3
Lastly, a® = —¢ dr d¢ % %
dt? dt dt 23| dt dt
_ d? ¢ L1 1 dr d¢ % %
at>  rodt dt S dt dt

11.7 Summary:

The need for introduction of Christoffel symbols for a group of derivatives of the fundamental

tensor is basically explained in the introduction. Two kinds of 3—index symbols (Christoffel) are

defined along with their symmetry properties.

interrelated.

Though there are two kinds of symbols, they are

Transformation laws for the 3—index symbols have been derived and showed that they do not

form the components of tensors.

contravariant and covariant indices.

However, the notation is explained consistent with the

A good example has been worked out on the transformation laws of velocity and acceleration

vectors and a comparison is given with respect to the cartesian coordinate system.
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Christoffel symbols have been calculated for a given line element. Though the calculations
are cumbersome, a methodical procedure is explained. Cautionary notes is given wherever it is

needed.

11.8 Key Terminology:

Christoffel symbol of 1* kind — second kind — vector and acceleration components — line
element — contravariant type index — differentiation of a determinant.

11.9 Self — assessment questions:

1. Show with the usual notation

og ij
Ox

(1) - = [Lik]+ [, K]

In what indices it is symmetric?

N
(i1) {ik} = log \/g

ox*

2. The line element in a two dimensional surface 6 — ¢ is given by ds* = R?d6” + R’sin’0 d¢’
where R is a constant. Find all components of the metric tensor and the Christoffel
symbols of first kind for this surface.

3. State and prove the transformation law for the Christoffel symbols of the first kind.

Pq
4. Show that o =— g {q } —gi* {p }
ox"™ om om

5. What are Christoffel symbols? Show that they are not tensors. Describe the properties of

Christoffel symbols.

6. Define the Christoffel’s symbols of the first kind and the second kind and establish the
relation between them. Explain the nature of indices and the symmetry properties of the
symbols. Obtain the Christoffel symbols in the rectangular cartesian coordinate system.

7. Compute all the Christoffel symbols of first kind for the line element
ds* =e¢™ dr’ — r*d6” — r’sin®0 d¢” + " dt?

8. Obtain the Christoffel symbols of both kinds

for a space with the metric ds* = f(u, v)du® + h(u, v)dv*

og i og ik . ) :
-~ ——— in Christoffel symbols of first kind
X OXx'

9. Express
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11.10 Reference Books:

1. C.E. Weatherburn ‘Riemannian geometry and tensor calculus’, Cambridge University Press,
1957

2. F.A. Hinchey, ‘Vectors and tensors for engineers and scientists’, Wiley Eastern Ltd., Delhi,

1976.

3. A.W. Joshi ‘Matrices and Tensors in Physics’,Wiley Eastern Ltd., Delhi, 1975.

4. B.S. Rajput ‘Mathematical Physics’, Pragati Prakashan, 1999.
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Unit — IIT

Lesson — 12
COVARIANT DIFFERENTIATION

Objectives:

» To derive the components of velocity and acceleration vectors in the generalized
coordinate system.

» To show that the coordinate derivatives of tensors are not tensors.

» To obtain the covariant derivatives of covariant vector, scalar invariant, contravariant
vector, second order covariant tensor.

» To show that covariant derivatives of fundamental tensors and Kronecker delta vanish.

» Using covariant derivative, to being the expressions for grad, curl, div and Laplacian

operations.

Structure:

12.1 Introduction

12.2 Covariant derivative of a covariant vector
12.3 Covariant derivative of a scalar invariant
12.4 Covariant derivative of a contravariant vector
12.5 Covariant derivative of a second order covariant tensor.
12.6 Curl of a vector

12.7 Divergence of a vector

12.8 Divergence of a tensor

12.9 Laplacian of a scalar invariant.

12.10 Summary

12.11 Key Terminology

12.12 Self — assessment questions

12.13 Reference Books

12.1 Introduction:

In the earlier lesson — 2, it is learnt that the partial derivatives of a scalar field with respect to
the coordinates are the components of a covariant vector. In general, however, differentiation of

a tensor (except that of rank zero) with respect to the coordinates does not give a tensor. On the
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other hand, differentiation of a tensor with respect of any parameter other than the coordinates
does not alter the nature and order of the tensor.

It is nevertheless possible to construct expressions containing the partial derivatives of a tensor
with respect to the coordinates and those of the metric tensor transforming like a tensor. Such
expressions will be defined and discussed in this chapter.

Once again we start with the already explained concept of velocity and acceleration vectors.

Q: Show that velocity and acceleration are contra-variant vectors.

Solution: velocity: If t denotes time and dx' are the components of an infinitesimal contra-

i

variant vector, then are the components of velocity vector. We know the transformation for

dx' as

X

dx' = &gy

ox’
dx' ox' dx!
or = —
dt ox’ dt
., X' _, &
(ie)., U = éuj where u' = % (components of the velocity vector)

This shows the quantities U' transform like a contravariant vector and thus the velocity is a

contravariant vector.

Acceleration: Since the velocity vector is represented by its contravariant components, we have

_ ox”* o dx!
a . Z_ i (1) whereu' = @
ox' dt
Differentiating (1) w.r.t. time t, we get
d—a 82—0( o a—a d i
L S )
dt ox'ox’ ox' dt

we know the expression for the second derivative of X* w.r.t x’* as (equation (16) in lesson 3 of

this unit)

o’z _ [l &x* Ja|& & 5
ox' ox ij| ox' ab| ox' ox!

substituting equation (3) in (2), it is seen that
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due  fa| &x* & {l}ai X du
+ uu = +

o iy
dt ab| ox' ox’ ij| ox' ox' dt

due Ja|_, | [l1]&x* . & du
+ uu | =9 .. Cuut 1
dt ab 1j] 0x ox dt

1 o 1 a
- [{}uu L ] o (4)
i dt ) ox

in virtue of equation (1) and replacement of the dummy index i by L.

As it has been started with the time derivative of a velocity vector which should lead to the
du*  d°x”
dt dt’

acceleration vector with its components in the generalized coordinate system as

acceleration vector a” = in the cartesian coordinate system, let us define the

A L L ()
dt ab

aa

Thus equation (4) is simplified to

= 6;1 a (6)

which shows that acceleration is a contravariant vector.

aa

Note:
Cdx! 2.4
) dx’, and e are all the components of displacement vector, velocity vector
t
and acceleration vector respectively and they are all contravariant vectors. So
derivatives of the coordinates do not alter the nature and order of the tensor.
(i1) The components of the acceleration contravariant vector are given by (5)
exe dut _, dut e |_,_
3 = = aO! = + ua ub
dt dt dt ab

In the Cartesian coordinate system, the fundamental (metric) tensor has all the components as
constants and hence all the Christoffel symbols vanish. In such a case, the above equation is
du”

dt

simply reduced to a“ =
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Thus the definition of the acceleration vector in the generalized coordinate system as

given by (5) is justified.

Q: Show that the coordinate derivatives of any tensor other than a scalar do not transform
like the components of a tensor.

Solution: If ¢(x") is a scalar invariant its derivatives with respect to the coordinates is given

by
% = % (v scalar invariant)
X X
_ &
X! ox'
< —
or Al: g Aj —————————— (7)

0
Where A; =a—¢i = components of grand ¢ and equation (7) represents the law of
X

transformation of a covariant vector. Thus the coordinate derivative of a tensor of
order zero (scalar) is a covariant tensor of order one (vector).

Again consider a covariant vector transformation as

_ ox'
u, = o U
ox
Differentiating this w.r.t. X, we get
Ju,, o’x' ou; ox' ox’
: o ®)
ox”  x“ox’ ox’ ox* ox”’

The second term on the RHS of the above equation has a tensorial character, but the

do not transform like the

appearance of the first term shows that the functions a_;
X

components of a second rank tensor.

12.2 Covariant derivative of a covariant vector:

The observations from equation (8) raise the important question of whether or not it is

a

&ﬁ

possible to add correction term to the partial derivatives so that the result would be
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covariant tensor of order 2. By determining the appropriate correction terms, we define the
so-called covariant derivative.

Let u; and U, be the components of a covariant vector in the coordinates x' and X'
respectively. Differentiating the law of transformation
ox?

U, = — u; 9
i ailuj ()

with respect to xk , we have
ou, Ou; ox! ox° . o°x!
= - u; -
x* oxt oxtooxt Toxioxk

_ Ou, ox° ox’ Ilox? i |ox® ox®

" _+u -
o ox ox* | )ik[ax'  |ab[oxt ox"

(using similar expression as in (3))

ou, ox" ox* 1_ﬁ {J} ox* ox"
.

- + —
ox' ox ox* ik ab 7 ox' %"

ou, [ 1]_ ou, ] ox" ox"
S e I b Ui | =i =k
OX ik Ox ab oX' OX

(. aand b are dummy indices, they are interchanged in the first term.)

If ou, 1 (10)
Weput Uj = —— -3 . pU =m—mmmmmmm
pHt fix ox* k[
the above equation becomes
o ox* ox"
k- Uab —
ik b 6%1 6ik

showing that the quantities u;x are components of a covariant tensor of the second order. This

tensor is called the covariant derivative of the covariant vector u; with respect to the fundamental

tensor gj;.

Covariant differentiation is indicated as above by a subscript preceded by a comma. Some

authors use the notation as u;.x instead of u;.
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12.3 Covariant derivative of a scalar invariant:

It is defined as the vector whose covariant components are its ordinary derivatives. Thus, if ¢

is scalar invariant,

¢
JT T mmmmmmeen 11
¢ o (11
The covariant derivative of this vector is denoted by ¢,;. This follows from equation (10) and
it gives
_dg,i) |1
(q)ﬂl),J axj IJ ((b:l)
0° 1| o
or ¢,ij = i¢j— .. ;ﬁ
Ox'0x 1] Ox

RHS expression is symmetric in i and j

S0 = g oo (12)

In this case the order of the covariant differentiation is commutative. But this is the only case in

which it is so.

12.4 Covariant derivative of a contravariant vector:

Let u' and U' be the components of a contravariant vector in two coordinate systems x'and X'

respectively. Differentiating the law of transformation

w= X g (13)
ai.l
W.I.t. xk, we obtain
ou' _ ox' ox* ox' g o*x' x*°
ox*  ox* ox* ox! oxiox® ox*

82X1

ox'ox*

By replacing the corresponding expression for

9

ol _aw o {b_}éxi _{i}axh x' | &x*

ox*  ox* ox* %) jalax®  |hlf ax! ax* | ox*

- (14)

%4_ 1 ﬁjaxh aXl aia:aﬁj aiaﬁxi_i_ﬁjb_ﬁiaia

ox* hl ox' ) ox* ox*  ox* ox* ox! ja| ox® ox*
h

But ﬁjax—.=uh from (13)

ai.l
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iaxlaga:iélzi
hl| ox* ox* |hl| ¢ |hk

ou’ X' ox' _ out X" ox’
X' oxk ok X oxF %"

(*."j is dummy and it is replaced by b for the sake of common factors.)

and

Therefore equation (14) becomes

{Gui {i}h] ou’ | b|_;]ext ox
+ u = u

ox*  |hk ox* | ja ox* ox®
o i,
If tulk= SER SIS | B 15
we put u ok {hk}u (15)
This equation becomes
uk=1u'a aXA aik (16)
ox' Ox

showing that u'k are the components of a mixed tensor of the second order.

It is called the covariant derivative of the contravariant vector u' with respect to the fundamental

tensor.

Note: covariant differentiation of any tensor leads to another tensor with an additional covariant

character. Thus

Al k — 3" order mixed tensor (2 contravariant and one covariant)
Ay, k — 3" order covariant tensor
Al k — 3" order mixed tensor (one contravariant and 2 covariant).

There is no contravariant differentiation defined.

12.5 Covariant derivative of a second order covariant tensor:

We know the law of transformation of a second order covariant tensor as

— oxt oxd
Aw = = agb Aij (17)

Differentiating w.r.t X©, we obtain

oA  OAy ox' ox' ox" A o’x' ox A ox' 9! as)
ox© ox" ox* ox® ox° | ox°ox* ox® | oxX* Ox°Ox°
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JOA o e [[h[ax [ ]ax ax
ox" T oxt ox® ax° C ox® || ac|ax"  |pq| oxt ox

i h_ i i P q
ia, X Ox )oK O (19)
ox" | | be| ox pq) ox° Ox°©

by virtue of equation (3)

Or

0Asn | D ox' ox') |h ox' ox!
i} Ay iy | - Ay

ox°© ac oxX" OX be ox"* Ox
_0Ay ox' oaxd ox" i ax” ax) axt | ox' ox® oxd
8Xh ox? aib ox° y pq ox? agb ox° 1y pq ox? aib ox°

- (20)

In the LHS expression, using equation (17)

= A, and
1 h b hb
X" OX
ox' ox!'  —
ij - h
X* OX" ‘

In the RHS expression, interchange the repeated indices p and i, replace the repeated index q
by h in the second term. Similarly interchange the repeated indices p and j and replace the
repeated index q by h in the third term so that all the three partial derivatives occur as common

factors. Thus equation (20) becomes

aKab_h_K —h_K _ 6Aij_PA'_P A ox' ox' ox" e
ox¢  lac| ™ |bc| ox" lih[ ® ljh| P )ext ox® &x°

If then we put

Ajp= —0 — Ay — YN 22
ij,h ﬁxh {ih} pj {]h} p ( )

Equation (21) takes the form

(23)

which shows that the covariant derivative of a 2" order covariant tensor is a third order covariant
tensor. Ajj; as given in (22) is the covariant derivative of the second order covariant tensor w.r.t.

the fundamental tensor.
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Similarly it can be shown that the covariant derivatives of the tensors A and Aij can be proved

to be

Aij,k=ai: +Aih{j}+Ahi{i } ---------- (24)
ox hk hk

and

Aij,k:ai]:j + A {i } Al {h} ---------- (25)
ox hk bk

are third order mixed tensors with the indices as shown in equation (24) and (25).

Q: Show that the covariant derivatives of the tensors gj;, g and Sij all vanish identically.

Solution: we know that

_ Og; h h
8ijk ox h K 8ih ik

agij
= — [, ik] - [1, jk
" [, ik] - [1, jk]
=[i, jk] + [j, ik] - [j, ik] - [i, jk] = 0
Similarly,
i agij ih J b i
ij =2 4 il + j
O {hk} ® hk
og" ol w1
But we k that =—g A S S—— 26
ut we know tha o g {hk} g " (26)
Hence g’y =0

S aé‘ji w1 i | h
Again &, = P + 0, el ” o, ik

=0+ {.lk} - {lk} =0 (. 5; is a kronecker delta)
J J

ij...k
/m..n

A tensor A of any order may be differentiated covariantly as already mentioned and its

covariant derivative is given by

j.k _ 0 Ak

Im...n,p aXp Im..n
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_,’_Aaj..“k { 1 } + _,’_Aijwa { k} Aij““k { a’} Aij“..k { a }
/m..n s /m..n - am..n T T Im.a ) ~°°777°C (27)
ap ap Ip np

aj...k
/m.n*

This is a tensor whose covariant order is greater by unity than that of A The process of

covariant differentiation can be repeated indefinitely. The covariant derivative of the first

covariant derivative is called the second covariant derivative, and so on.

12.6 Curl of a vector:

Let u; be the components of a covariant vector. Then its covariant derivative is given by

ou, [a
Uij = P ) U,,
X 1

then
ﬁui 8uJ a a
U — U= — —— —y..0 W T 9.0 W
ox!'  ox' |y ji
. ou.
= aul. — (28)
ox’ ox'

(*." the three index symbol is symmetric in i and j)
Since u;j is a covariant tensor of order 2 and hence u;; - u;; should also be the same and it is called

the curl of the vector U

Ou; Ou;

xi ot

and it is an anti symmetric tensor.

(i.e) curl U =u;j-uj;= (29)

Q: Prove that ordinary rule of differentiation of products also apply to the process of covariant
differentiation.

Solution: Let us consider the product

C'=A'B!
A i i
Then C',k = ack + c”
ox ok

a i j 1 a
=—A B'+ C
ox* ! ak
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i

oAT . oBl (i |
_Pipia B +{1}A?BJ

ox " k ak
NS | i
S8  pe gi e B
ox " ak| ox* !
_aAi. i o ) ) o . i
= | —+ AY =3 AL |B + 4 A‘aBJ+aBkA%
ox ak| ' |jk jk ox* !
i j J i a 6BJ i
:Aj’kBJJr{ak} AjB +8xk Aj
i ' ] . OB i Al j oA
:Aj,kBJ+({ak}B + k]Aj—Aj,kBJ JrBkaj

which proves the result.

Q: A necessary and sufficient condition that the first covariant derivative of a covariant vector be
symmetric is that the vector be a gradient.

Solution: If u; denotes a covariant vector, then

. k
Ui; = % — .. %
ox’ ij

ou, k
= gf - { } Uy (due to the symmetry property of the Christoffel symbol).
1
ou;, Ou, .
SO YT gj—gf =curl u

But given that u;; is symmetric. (i.e) curl G =u;;—uj; =0
so U must be a gradient of a scalar function. Conversely, if u; are the components of the gradient
of a scalar ¢, then curl V¢ = 0.

12.7 Divergence of a vector:

The divergence of a contravariant vector u' may be defined as the contraction of its covariant

derivative. It is thus a scalar invariant. We denote it briefly by div u'.

. ou, i
Since ul;=—_— + uh < b, it follows that
Tox!? Y
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= % (equation (7) of the previous lesson)
= — +u' —lo \/_ (since h is dummy)
aXl
Or div u' = L i (ui\/g) ---------- (30)
\/g ox'

12.8 Divergence of a tensor:

The divergence of a tensor is defined as its contracted covariant derivative with respect to the
index of differentiation and any superscript.

Example: Consider the covariant derivative of a contravariant second rank tensor.

i . .
AY = 6Ak U P RN
’ ox ok ok

Now div (AT)= A"

i ) )
zaA_ + 1. A% + J. AlY
ox’ aj aj

Z/iu (—log\/_j A+ {00} A

, J 0
= 1
since {0{]} P 0g /g

_ oA, La\/g IRES YT
ox’ \/E ox’ a

_T @(A”Iﬁ{ } A e (31

The second term of (31), in view of the repeated indices a and j, can be written as

{ola} A {jia} A

i . i . .
= { } A’ =—{ } A if A?is skew — symmetric.
] q



ACHARYA NAGARJUNA UNIVERSITY 13 CENTER FOR DISTANCE EDUCATIONN

i . .
or { } A% =0 if A? is skew-symmetric .
]

so if AV is the skew — symmetric tensor, then equation (31) becomes

div(AY)= Al OV Pe— (32)

,J_\/_aj

12.9 Laplacian of a scalar invariant:

We know that the gradient of a scalar field ¢, is a covariant vector A; given by

0
Ai ¢ = ¢3 i
6 i
Its contravariant components can be represented as
. 8(,15
1 __ 1] _ 1]
A= glAj=g P b,
Div grad ¢ = V- @¢ =V’¢ where V? is Laplacian operator
=Ali
= (2" ¢)i= g%+ & i
=0-+gY g5 - (33)

since the covariant derivative of the fundamental tensor vanishes and ¢,;; is symmetric.

y ok , 2 k
So V2 ~ ¢! {%—{U}(ﬁ,k} - ¢ [afi—g;—;;—"i{ijﬂ ---------- G4

Other form is

(\/_ Al

-

in which case, the Laplacian operator can be written as

vhii(\/ggij a'j ---------- (36)

aXJ

V¢ =div grad = Al =

12.10 Summary:

A need for covariant differentiation other than ordinary differentiation is explained in the

introduction.
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Velocity and acceleration vectors are once again treated. Their representations in the
generalized coordinate system and cartesian coordinate system are thoroughly distinguished.
The concept of a covariant derivative of a covariant vector via ordinary differentiation is

introduced. This has been extended to all other types of tensors.

Special cases of the covariant derivatives of a scalar function ¢, gj;, ¢ and O J‘ are treated.

Ordinary rules of differentiation of products will hold good even in covariant differentiation.
Curl, div and Laplacian in vector analysis are once again explained with their expressions in
terms of covariant derivatives.

12.11 Key Terminology:

Covariant derivative — curl — direvgence — Laplacian operators.

12.12 Self — assessment questions:

1. Find the covariant derivative of the gradient of a scalar function ¢ and show that it is a
symmetric covariant tensor of order two.

2. Find the expression for the divergence of a symmetric contravariant second rank tensor.

i} i .
3. Prove that A" = (A" \/g )+ Ak {k} the last term vanishing if A* is skew-
’ J

T

symmetric. Also show that

M A

4. If Ay is the curl of a covariant vector, prove that A, + Aji + Awij = 0 and that this is

equivalent to

OA;  OAy  0A,

P i j
Ox OX OX

5. A fluid in motion in a plane has the velocity vector field given by u' = (x?, y?) in cartesian

coordinates. Find the covariant derivative of the vector field in polar coordinates.

12.13 Reference Books:

1. C.E. Weatherburn ‘Riemannian geometry and tensor calculus’, Cambridge University Press,
1957.

2. F.A. Hinchey, ‘Vectors and tensors for engineers and scientists’, Wiley Eastern Ltd., Delhi,
1976.

3. A.W. Joshi, ‘Matrices and tensors in Physics’, Wiley Eastern Ltd., Delhi, 1975.
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Unit - IV
Lesson - 13

LAPLACE TRANSFORMS

Objective of the lesson :

> To define Laplace transform from Integral transform.

> To define the properties of Laplace transforms with examples.

> To obtain Laplace transforms of some special functions.

> To evaluate certain integrals using Laplace transform techniques.
> To provide table of Laplace transforms for quick reference.

Structure of the Lesson :

13.1 Introduction
13 2 Definition of Laplace transform
13.3 Some properties of Laplace transforms
13.3.1 Linearity property
13.3.2 First shifting property
13.3.3 Second shifting property
13.3.4 Change of scale property
13.3.5 Laplace transform of derivatives
13.3.6 Derivatives of Laplace transform
13.3.7 Laplace transform of integrals
13.3.8 Periodic functions
13.3.9 Initial value theorem
13.3.10 Final value theorem
13.3.11 Behaviouroff(s)ass -0 ands — »
13.4 Laplace Transforms of some special functions .

13.4.1. Gamma function
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13.4.2. Bessel function
13.4.3. The error function and its complement
13.4.4. Sine, Cosine and Exponential integrals
13.4.5. Unit step function
13.4.6. Dirac delta function
13.4.7. Sin V't
13.4.8 Evaluation of certain integrals by Laplace transforms.
13. 5 A short table of Laplace transforms
13.6 Additional problems
13.7 Summary of the lesson
13.8 Key terminology

13.9 Self Assessment questions
13.10 Reference Books

13.1 Introduction

The Laplace transformation is a powerful method for solving linear differential equations
with constant coefficients arising in engineering mathematics. In the first step the differential
equation is transformed into an algebraic equation. Nextly, the algebraic equation is solved
with algebraic manipulations. Finally, the solution of the algebraic equation is transformed
back in such a way it becomes the solution of the original differential equation.

Apart from the advantage of reducing the differential equation into an algebraic
equation, another advantage is that it takes care of initial conditions without the necessity of
first determining the general solution and then obtaining from it a particular solution. Also,
when applying the classical method to a non homogeneous equation, we must first solve the
corresponding homogeneous equation, while the Laplace transformation immediately yields
the solution of the non homogeneous equation.

These transformation techniques are also useful in solving the boundary value
problems and in the evaluation of certain integrals with much ease.

13.2 Definition of Laplace transforms :

Linear integral transformations of functions F(t) defined on a finite or infinite interval
a<t<b are particularly useful in solving problems in differential equations. Let K (t,s) denote
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some prescribed function of the variable t and a parameter s. A general linear integral
transformation of functions F(t) with respect to the kernel function K (t,s) is represented by the
equation

j:K D0 — 1)

= f(s)
It represents a function f(s), the image or transform of the function F(t).

T{F®}

If a function F(t) defined for all positive values of the variable t, is multiplied by the

Kernel function e and integrated with respect to t from zero to infinity, a new function f(s) is
obtained. Thatis,

j:e-st Fydt = f(9)
= L{F(t)}

This operation on a function F(t) is called the Laplace transformation or Laplace transform of
E(). The new function f(s) is called the Laplace transform of F(t). Hereafter, we shall denote
the original function by a capital letter and its transform by the same letter in lower case.

Ex (1) : Find the Laplace transform of the following functions :
() F) =1 (i)F@E)=t (i) F(t)=eM

Sol :- (i) As per definition

Ly = [fetaa = S| - 1 50
0 -s|, s
, L{t}zfe‘“tdt =te—gw4—1j;”eﬂ1dt
(i) . s, s
11 1 . .
= 0+g-g =2 using (i)
kty _ [P o-st okt [ (k) t
(i) L{e“} = J.O es.eC. dt _IO € Jdt
- using (i)

s—k
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13.3 Some properties of Laplace transforms :
13.3.1 Linearity Property :

A Laplace transform L{F(t)} is said to be linear if for every pair of functions F,(t) and
F.,(t) and for every pair of constants C, and C,, we have

LIC,R(t)+C, R (1)} = C, LR (1)} + C,L{R (1)}
= C,f(s) + C,f,(9)

where f (s) and f.(s) are Laplace transforms of F_(t) and F.(t) respectively
Proof : We have L{F (1)} = f,(s) = J‘e_St F(t)dt
0

and LR} = f,(9) = j:eﬂ F,(t)dt

sothat L{CF(t)} = Cf,(9) = j:e-st C,F(t)dt = C,L{F(t)!
and  L{C,F (1)} = C,f,(9) = j:e-sf C,F(t)dt = C,L{F,(t)
- LIC R () +C,R, (1)} = j:eﬂ [C,R(t)+C,F,(1)}dt by definition

- j:e*ﬂ CR()dt + j:e*ﬂ C,Fy(t)dt

C,L{R (D)} + C, L{R, (1)}

Cf(9 +Cofp(9 e ©)

The result may be generalized for any number of functions and for the same number of
arbitrary constants i.e.,

L{Z C F (t)} = icr LIE®y (4)

Ex (2): Find the Laplace Transform of 4e® +6t®—4cos3t+3sin4t.
Soln: Applying the linearity property, we have

L {465t +6t3—4cos3t+3sin 4t}

= 4L{e”} + 6L{t} — 4L{cos3t} + 3L{sin4t}
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s-5 S s°+9 s°+16
4 36 4s 12
PR + R
s-5 s* §2+9 s%+16

13.3.2 First Translation (or Shifting) Property :

If f(s) be the Laplace transform of F(t), then the Laplace transform of €* F(t) is f(s-a),
where a is any real or complex number i.e., if

L{Ft)} =f(s),then  L{e®F(t)} =f(s—a)
Proof : Given, L{F(t)} = j:e-st F(t)dt = f(9)
-~ L{eAF(t)} = j:e-st e F(t) ot

- j: e &I E(D) dt

= J?e*“t F(t) dt by putting u = s-a
= f(u)
=ftsa) (5)

Ex (3): Find the Laplace transform of e? sin3t

3
+9

Soln : We have L{sn3t = Z

3 3
(s+2)2+9 S?+4s+13°

s L{e® sin3t} =

13.3.3 Second Translation (or Shifting) Property :

Ft-a), t>a

If L{F()} =f(s) and G(t):{o o

Then L{G(t)} = e* f(s).

Proof : We have L{G(t)} = _[:e*s‘ G(t) dt
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- E‘e-st G(t) dt + jw e G(t) dt
- j:e-sf.o dt + j:e-sf F(t-a) dt
- j: e F(t-a) dt

- j:e*(“*a) Fu)du, bytakingu=t-a ie., du=dt.

whent=a,u=0 and whent= o,Uu= ©.

e J:O e ¥ F(u) du

=e2f(s) (6)
Ex (4): Findthe Laplace transform of F(t), where

2r 2r

COs| t—? , t>?

F(t) = 3
0 , t<—

3

Soln : We have, L{F(t)} = j:e-st F(t)

273 0
=j e0. dt + J g cos(t-z—nJ dt
243 3

0

o 2r 2
IO exp{—s(u+3ﬂcosu du by taking u=t—?ﬂ

27s

e 3 L{cosu}

= e 3

41

13.3.4 The Change of Scale of Property :

If L{F(t)} =f(s), then L{F(a)} if( j .......... 7)

S
a
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Proof : We have L{F(t)} = J':e‘St F(t) dt = f(9)

L{F(at)} = j: e Fat) dt

= I:e‘w’a F(u) %

_1 I Cep F(u) du
a Jo

_1 [“e™ Ft) o
a b

-2 1(p)
a

6

Ex (5): Findthe Laplace transform of cos5t .

s

Soln : We have, L{cost} = —, s>0
s“+1

L{cosbt} = 1 S/5 S

5 (s/5)2+1 +25

13.3.5 Laplace Transform of Derivatives :

(on replacing t by at)
by taking at = u
where |O=E.

a

(replacing u by t)

| n

If F(t) is continuous for t =0 and of exponential order as t — « while F(t) is sectionally
continuous i.e., F/(t) is of class A for t=0, and if L{F(t)} =f(s), then L{F/(t)} = sf(s)—F(0) .

In general if L{F(t)} =f(s) and F(t), F(t), F'(t),

F")(t) are continuous for ¢>0 and

of exponential order as t— « while F"(t) is sectioally continuous for t=0, then

L{F™ (1)} = s"f(s) - nis“-“ F7(0)
r=0
= s"f(s) — s"* F(0) - s"? F(0)

Proof : Since  L{F)} = f(9 = j:e-st F(t) dt

- sF"2(0) - F"(0)
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L RO} = [ Pt dt = e Fo +s [[e*Fvd, integrating by parts
= 0—-F(0)+sf(s)
=sf(9-FO) e, (8)
Applying the result (8), we have
L{F'(t)} = sL{F(1)}-F(0)
= s{sf(s)-F(0)} - F(0) by (8)
=&f(9-sFO)-F(0) e 9)
Similarly L{F"(t)} = $°f(5) —S°F(0) —=SF(0) = F'(0)  wvvreree. (10)

Generalizing it, we find

L{FV ()} = $"f(9) - S"F(0) — S" > F(0) ..ovvveen — sF™2(q)
_ F(nfl) (0)

n-1
= s"f(g) - > 8" FO(0)
r=0

Ex (6): Find the Laplace transform of F(t) when F(t) = e*
Soln: Given Fit)=¢", ..F0)=1and F(t) = 3¢*
As such L{e"} = sL{e*}-1 by (8) above

s 3
s-3 s-3

Aliter.  L{F(O} = L{3e") = .

13.3.6 Derivatives of Laplace Transforms:

If the function F(t) is sectionally continuous for t>0 and if L{F(t)} =f(s), then
f'(s) = L{—tF(t)}.

Proof : We have f(s) = J‘:je*S F(t) dt

Differentiating either side w.r.t. ‘s’ we get
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f'(s) = j:(—t) e F(t) dt = j:e-a{—t F(t)} dt
= L{-tF®)} s (12)
In general if F(t) is sectionally continuous for t>0 and if
L{F(t)} = f(s), then
() = L{(D)"FO)} e (13)

n

n d
where f(s) = o

f(s) for all integral values of n.

We may state it as

dnn LG R, (14)

{t"F(t)} = D" f"(9) = (-D)" =

Ex (7): Find the Laplace transform of t3¢'.

. 1
Soln: Since L{et}=f(5)=<_1

ooy & (L) - LADL
MU=V (1) = = ey

B 6
~ (s-D*

13.3.7 Laplace Transform of Integrals :
(i) If L{F(t)} =f(s), then L{I;F(“) dU} = %
Proof : Let G(t) = J.;F(u) du
, d [ et 0
Then G'(t) = E“{)F(u) du} - F(t) and G(0) = jOF(u) du=Q.

Applying the property [13.3.5], we have
L{G'(t)} = sL{G(1)}-G(0)

ie. L{F®)}=sL{G(t)}-0 or f(s) = sL{j;F(u) du}
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ie., L{j;F(u) du} = %

(i) If L{F(t)} = (s) then L{@} = [fa (16)

F(t
Proof : Let G(t) = % sothat F(t) = tG(t)

o L{F()} = L{tG(t)} (on taking Laplace transform)
= (-1 %L{G(t)} by property [13.3.6]

ie. —f(9 = %L{G(t)}

Integrating both sides with regard to s, we get
-| “f(s)ds = L{G(t)}
e, L{GH)} = ﬁ(u) du, on the assumption that Lim L{G(s)} =0,

: = sint
Ex (8): Findthe Laplace transform of JO %dt.

Soln : We have L{sint} = 821+1 =f(s9 (say)
and L{S'T”t} - [ u?il by (16), - f(u) = uz1+1
= [tan’lu]: = %—tan’ls
= cot''s s tans+cot's = %
- tantd

Q

<

Hence by (15) of property [13.3.7],
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13.3.8 Periodic Functions:
If F(t) is a periodic function with period T>0, so that

j e F(t) dt
F(t+T) = F(t), then L{F(t)} = Tew a7
Proof: We have L{F()} = I SH(t) dt

- T <1,
= joe F(t) dt+L e (1) dt+LTe F(t) Ot + covveeeeeenn

-y L‘:“’Te*ﬂ F(t) dt

n=0

If we put t=u+nT, then F(u+nT)=F(u) --F({t+T)=F() (given)

Thus,
LF@) = S [} =™ Fuyau
or  L{FB} =Y e jOTe-S“ F(u)du

- (1+e +e =4 ) _[OTe*w F(u) du

e)t=1+e" +e> +....when ‘e’g‘<1

1 7 g
= o jo eYFudu - (l-e

j *F(t) dt _
(replacing u by t)

—T

Ex (9): Findthe Laplace transform of F(t) when F(t) is a periodic function with period 27
such that

sint, O<t<r
Ft) =
0, T<t<2m
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: L} = — = [Tt dt
Soln : We have R jo

T 2r
- 1;_2”8“) e sint dt +I e .0 dt}
_e V/

1 g™ .
= ———|—5— (-ssint—cost)| +0
1-€ s“+1 0

ax

+ Je*Sinbx dx = —~— (asinbx—b cosbx)
a“+b
1 e®+1
1-e?® §+1
1 1+e™

1l-e™)(L+e™) 1+s

1
(1-e™) 1+5%) -

13.3.9 Initial Value Theorem:

If L{F()} =f(s) then LIMK({t) =Limsi(s) (18)
Proof : We have L{F(t)} =sf(s)- F(0) by property [13.3.5]

ie, [e*F()d=sf(9-FO

Taking the limit as s— o,

Lim j; e S F(t) dt = Limsf(s)- FO)

or ';LT sf(s) = F(0) + .[:(LiTe‘St)F'(t) dt

S—>

F(0) + 0 wLime® =0

S

Lim F(t)

t—0

Ex (10): Verify the initial value theorem for the function
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Ft)y=e™
Soln : (9= LI} = L{e™) =

. _ . _3t _
Now i F) = Li ™ =1

and  Lim F(t) = Lim —— =1,
s soo S+3
Hence Lim () =Lim sf(s),
13.3.10 Final Value Theorem :
If L{F()} =f(s), then Limsi(s) =LimFy (19)
Proof : We have L{F(t)} =sf(s)-F(0) byProp. [13.3.5]
ie., J.:e’i F(t) dt = sf(s) - F(0)

Taking the limitas s—0

Lim :e’“ F(t) dt = Lim sf(s)-F(0)
; _ ; *© st

or  Limsf(s) = F(O) + Lim jo e F(t) dt
_ (- —st '

- F(0)+jO (IgLrg] e )F(t) dt

F(0) + j:1 F(t) dt

F(O) + j: % F(t) dt

F(0) +[F()]s

F(0) + IFIT F(t) - F(0)

= Lim K1)

t—>oo

Ex (11): Verify the Final value theorem for the function
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F(t) =e™.
1
Soln : We have Fi)=e? sothat f(s)= L{F(t)} = L{e*} = <2

. LimF(t) = Lime?® =0
t—o t—0

=0

and Limsf(s) = Lim -y

Hence LIMK({) =Lim sf(s),
—>®© S>>

13.3.11 Behaviour of f(s)as s—so0and s—ow :

We have L{F(t)} = f(s) = j: e S F(t) dt
when s—0, f(0)= j: FOd e (20)

and when s—o,  Limf(s) = j:o. Ftydt = 0 ........... (21)

13.4 THE LAPLACE TRANSFORMS OF SOME SPECIAL FUNCTIONS

[13.4.1] The Gamma function. Euler's Gamma function is defined as

Fnz-[:e’x x"tdx n>0

Its important properties have already been discussed in an earlier lesson, but a few of
them are mentioned here.

'm+) =nl'n forn>0 and I'n= In+3 forn<0
n

I'(n+1) =n for positive integral values of n.

I'nT" (1-n) = _” , O<n<ll“1=\/;
snnz 2

Now we have L{t"} = J':e‘St t" dt

d
and dt=2
s

tn |

Put st=y i.e., t=
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1 _ rn+l

Ut} = o [etvdu=—2 (22)

(by the definition of Gamma function)

1
If we now put n =5

ri

L{t Y2} = sl_/% - % ............... (23)

13.4.2 Bessel Functions :
Bessel function of order n is defined as

t t? t!
J, (1) = 1- +
2"T(n+1) 2(2n+2) 2.4(2n+2) (2n+4)
which satisfies Bessel's differential equation

n2

y'(t) + % y'(t) + (1_?2J y(t) = 0

or t? I (@) +tJ () +(t*-n?) J. (1) =0
Some important properties are :
J_, () = (-)" J,(t), n being positive integral
J.a(@it)y =i J (), J, being modified Bessel function of order n.

Joa® = 21 3,00 - 3,40

d n n . '
g 3a (O} = t73,,(1)  which becomes (1) =-J,(t) for n=0

t
X—=
X

eE[ ) = fpn(t)x”

n=-w
known as generating function for the Bessel functions.

J,(t) is called Bessel function of order zero and has for its expansion
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2 tt t®
Jo(t) = 1—?+ XYYy F overeeeenes

L4 e SN L U L i B N
o -

i2r, 4
TR S

Y1) (). ]

-1/2
= 1-(1+i2j = .
s s s?+1

Similarly 1{3,(t)} = 1-/Vs* +1

Aliter. J,(t) satisfies the equation
t Jo(t) + Jo(t) +tJy(t) = O
L{t Jp(t) + Jp(t) + tIo(1)} = O
Taking L{J,(t)} = f(s) and using properties [13.3.5] and [13.3.6].

—%{szf(s)—sF(O)—F’(O)} + {sf(s)-F(0)} - %f(s) =0

where F(t) = J,(t) gives F(0)=1 and F(0)=0
so—2sf(s) - f(S)+1+sf(s)—1-f'(s) = 0O
or sf(s)+ (S°+1)f(s) = O

fil) = -s 1 2

€0 f9 P41 2 £+1°

Integrating with regard to ‘s’

1 . . .
log f(s) = 5 log (s*+1) +log C, C being constant of integration
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C
VsP+1

Applying initial value theorem, we have

o (9 =

Lim sf(s) = Lim F(t)
S t—0

ie Lim = LimJ
il S—® SZ+1 t—0

o(t) which gives C=1

1 1

f(s) = Lo L{I, () =
Hence f(® m L.e., {J (1)} m

Now using the change of scale of property, we have

1
Lya) = f@ where (9= L3} = =—
so that f(EJ = ! = a
a \/(3)2 Vs + a2
= +1
a
Hence Lo (@)} = sziaz ............. (26)

Further to deduce  L{J,(t)}, using the property [13.3.6]

we get
d d a as
L{tJy(at)} = s [L{J,(at)}] = " ds {m} = (82 Jraz)3./2 .......... (27)
1
Similarly Lt} = @20 e (28)

13.4.3 The Error function and its complement

The error function of a variable t denoted by erf (t) or E (t) is defined as

erf (1) = e dx = E,(t)

=k

and the complement of the error function denoted by erf C (t) is defined by
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ef C(t) = 1-ef (t) = 1_ij‘te—x2 dx = ij‘we_xz dx
0 t

It is notable that

ITir(r)1 ef(t) =0 and It_im ef(t) =1

2t e 2 et » x* x®
Thus ef Jt = ﬁ.[o e’ dx = ﬁj-o {1—x T T dx
S tl’z—ﬂ+ﬁ—£+ ................
Jr 3 52 73
2 t3/2 t5/2 t7/2
Lierf V= — LtV ——— 4 —— —— 4.
{ \/_} Jr { 3 52 73
2 |I'3/2 T5/2 T7/2 T9/2
= ﬁ 33/2 - 35/2 + 57/2 - 59/2 F o

1 1 1 13 1 135 1
2 2 2 2497 2467

~ i 1+1 -1/2 ~ 1
PE s TS sl e (29)
13.4.4 Thesine, cosine and exponential integrals
. . . tsinx
The sine integral is defined as S () = 0 x dx
L . , t COSX
and the cosine integral is defined as Gt = L e dx

00 —X
Also the exponential integral is defined as E; (t) = J't ex dx

tsinx t 1 x3 x® X’
.[onX = J-O ;(x—§+§—7+ ........ J dx

we have S ()
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2t
= _ﬁ ﬁ_ﬁ .......
2ttt
S HS= Ldt——+———— .
SO { 33 59 77 }
1 1 2 1 858 1 71
— _2_—_—4+—_—6__._+ ............
s 33 s 58 & 77 s
3 5 7
_1fus_we Wt W' }

tn |~

Similarly L{C, (1)} = % log (s2 +1)

© e
t

and L{E®} = L{ |

w1
=

|

—X

0|

dx}, Put x=ty i.e.,

(on logarithmic differentiation)

by definition of Laplace transform

by changing the order of integration

1 1

= ~[logy-log (s+y)[’

1
s

E

y s+y
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iG]

% log(s+) e, (32)

13.4.5 Heaviside Unit Function or Unit Step Function:
Unit step function is defined as

0,t<a
1, t>a”

U(t-a) = {

- L{U(t-a)} = j:e*ﬂ U(t—a) dt

= j:e’“.OdtJrfe’g.ldt = =

e (33)

tn | =

13.4.6 Dirac deltafunction :

The Kronecker delta function is a function of two parameters, say m and n and we
have the following inportant property

;Cm S =Co (34)

where C_is a function of the discrete variable m. Thatis, §,,, makes all the terms in (34)

vanishing for m=#n and the only non zero term is C,35,, which is equal to C,. In fact,
eqgn. (34) itself may be taken as the difinition of Kronecker delta.

The Dirac delta function §(x-x') plays the same role as a function of a continuous

variable where as Kronecker delta is for discrete variables. Analogous to equ. (34), the Dirac
delta function is defined as

jw f(x)S(x=x)dx = f(x')

Also Jif(x) ox dx = f(0)

which shows that the delta function in the integrand picks out the value of f(x) at the single
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point x" and does not take into account the behaviour of f(x) anywhere else.

It is also implied from (35) that
flé(x—x') dx =1
Also  6(x-x) = 0 (x=X)

The delta function may be considered as a limit of certain ordinary functions such as
given here.

(i) 6(x) = Lt 5.(x) where
=S x| <
5.(x) = {2e M<e (37)
0 |X|>e
(i) 600 = Lt ——— ¥ (38) Gaussian function
e e .

Laplace transform of Dirac 3 - function is
L{5(t-a)} = j: S(t-a)es. dt = e® by (35)

At a=0, L{5()} = 1.

Fourier transform of Dirac s -function is
Ro-a) = [ s(t-a)e™. d = e from (35)
and H&(t)} = 1.

13.4.7 Obtain the Laplace transform of sinyt :

Using series expansion method,

L{sn /t} = L{/t - (ﬁ)a + (\ﬁ)s,(\ﬁ)7+
5!

3!
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= L2} - % L{t¥2} + é.L{t5’2}—£.L{t7’2}+ ...............

/2 T1(B/2 (72 T1(9/2
32 o q &2 + g &2 o 72

_ ) 3
e P 1 = [
2s 2°s A\ 2°s 3\ 2°s

~ \/; i ,i ~ e—s/4 \/;
PYE e T T o2 (39)
13.4.8 Evaluation of Certain integrals by Laplace Transforms :
Showthat | cosx? dx = 1z
0 2 V2"
Consider G(t) = J:cos tx? dx
Taking Laplace transforms on both sides
I = 2
L{G(t)} = J’O e {J’O cos tx dx} dt
= jw(jwei cos tx? dtj dx
0 0
” S 2 2
= _[0 Z 1y dx Put  x*=stan®  2xdx=s sec®0. db
Iﬂ/Z s? sec? 0§ do s sec’d
- 2 2 or X = —F——.db
0 2\/stan0.s sec” 0 2 /s tan 0

1
in Y20 cos20 . do

i J‘n/z do _ 1 J‘n/2 S
24s 0 Jtane 245 o
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1 Vg .
2\/5 2 Sn% us|ng F(n) F(l—n) = S_nn” O<n<1
1 n\/E B n\/z i
2Js 2 4 s
o =Y E Ly (23)
4 s a Y
Putting t =1,
G(1) = J‘Oocosx2 dx = RELIN : \/E
0 4 2 2
00 *XZ 1
II. Showthat _[ e*.dx = =+
0 2
Sol : Consider G(t) = J.:e*txz.dx so that
st [P tx?
L{G()} = jo e UO e .dxj . dt
= J.w(roe' (sh)t dtj . dx
0 0
- dx 1. Lx|7 =
1 .
0 s+ X \/5 \/50 2\/5
o) = L{LJ AT V) AT
2/s) 2 Vs 2
* -t _ ﬁ -2
or joe dx = 5.t
o o e Jr
Putting t=1, J'O e” dx -

_ * COS X
| I'1. Evaluate the integral IO oz &
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At = [ 2% ax

0 x%+a

o o ¢~ COStX
[e UO T .de ci

Sol : Consider

Now L{F(t)}

00 1 00 g
IO x2+aZUO e . cos tx dtj dx

o ] S
I 5 - X
0 X“+a“ s“+X

S 0 1 1
T 22 _[ 72 2| K
s°—a” v \x“+a X" +S

- S [1 a1 X _ 1 tanll}
s - a a s S |0

- 1 for a>0, s>0
2a s+a

Rty = oyt o % ga
2a s+a 2a
| V. Evaluate the integral
© SN tx
F(t) = jo dx .

When t>0 and s>0,

0

or L{F(1)}

j:%(j:eg.én tx dt) dx

1 X d jw dx 1
0 x s?+x2° 0 x?2+s> s
_x1
2's

T
Ft) = — and
® =5

o) = e [0

F(0)=0 t>0.

(a>0, t>0).

dx} dt
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13.5 A Short table of Laplace transforms :

F(t) f(s) F(t) f(s)
1 1 1 7 inh k K
. < : sinh kt K2
1 S
2 et <2 8. cosh kt R
n! k
3. t" (n=12,...) o 0. e® sinkt m
n! s+a
4, th.e® (n=12,....) (S_a)n+l 10. e cos kt (s+a)2 K2
5 in k K 11 Vz
6 > 12, —= r
. cos kt K2 NG S
I'k+))
13, % (k> -1 &l
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Additional Problems :

. 2 .
(1) Find the Laplace transform of T snht,
2 .
Sol:- Let F(t) = n sinht

L{F(1)} = j(;”%.sjnht.est . dt

©x2 g —g!

= =. e ¥ dt
0t 2

_ J“”} (s Dt _J“’O} ~(s+Dt g
ot ot

_ |Ogu__1
u+l

S

(2) Whatis the Laplace transform of e cos (a+ bt) ?
Sol:- Let  F(t) = €“cos(a+ht)
= € (cosa.cosbt —sina.sinbt)

= cosa.e!. cosbt —sina. €. sinbt

where a, b and k are constants.

. L{F)} = cosa.L{ek‘.cosbt}—sina.L{e'“.sinbt}

—_—— — sSha.———
(s—k)? + b? (s—k)2 +b?

_ (s—k) cosa — bsina
(s—k)?+b?

(3) Find L{e‘at sinz(wt+6)} where a, w, 6 are constants.

Sol:- Let F(t) = e ¥ sin’(wt+0)
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s {1—(:03 (gvvt +9)}

= %eat _ 5% ot cosowt + NP g gnowt
L{F()} = 1 cos2 s+a N sin20 2w
2(s+a) 2 (s+a)?+4w? 2 (s+a)’+4w?-

13.7 Summary of the Lesson

With a basic understanding of the linear integral transform, Laplace transforms have
been defined. Several of the properties of Laplace transforms are proved and the examples
are given for each property.

Laplace transforms involving Gamma function, Zeroth order Bessel function, Error
function, etc., are specially treated. Dirac delta function and its Laplace transforms are clearly
explained.

The use of Laplace transforms in the evaluation of certain integrals is explianed with
specific examples.

A short table of transforms is given for easy memory and quick reference.

Some more examples have been worked and self assessment questions are given
covering the entire lesson.

13.8 Key terminology

Integral transform - Laplace transform - Kernel function - Gamma function - Bessel function -
Error function - Unit step function - Dirac delta function.

13.9 Self assessment questions
1. Using Laplace transform of derivatives, find L{tsnwt}.

Verify by applying the formula for the derivatives of Laplace transform.

2. Find the Laplace transform of < u,(t) where
0 t<a
Uu.(t) =
a(t) {1 t>a
3. Find the Laplace transform of the saw-tooth wave function

F(t) = O<t<p where F(t+p) = F(t)

olx
—
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4, Find the Laplace transform of half-wave rectification of - Sin Wt as shown in figure.
5. Find the Laplace transform of
sin kt snt O<t<rm
. . F t —
(i) . (i) F() { et
6. Obtain the Laplace transform of the differential equation
Y’(t)+4Y(t)+3J.OtY(t) dt = F)

1 O<t<?2

F(t) =
where F() {_1 petea

is a periodic function.

13.10 Reference Books

1. B.D. Gupta. “Mathematical Physics” Vikas Publishing House, 1980.
2. R.V. Churchill “Operational Mathematics” McGraw-Hill Book Co., 1958.
3. E. Kreyszig “Advanced Engineering Mathematics” Wiley Eastern Pvt. Ltd., 1971.
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Unit - IV

Lesson - 14

INVERSE LAPLACE TRANSFORMS

Objective of the lesson :

* To define the inverse Laplace transform

* To define convolution and to prove a theorem

* To state and prove Heaveside expansion theorem
* To give number of worked examples.

Structure of the lesson :

14.1. Introduction

14.2. Inverse Laplace transofrms
14.3. Convolution

14.4. Partial fraction methods
14.5. Examples

14.6. Summary of the Lesson
14.7. Key terminology

14.8 Self-assessment Questions
14.9 Reference Books

14.1. Introduction :

Much about Laplace transforms has been exposed in the previous lesson but using inverse
Laplace transforms finally will help us to complete the solution of the given problem. Thus the
usage of Laplace transform and its invrse is an intermediate technigue for a convenient and easy
approach to solve the problem. Out of all the integral transforms within our reach, the adaptability
of Laplace transform and its inverse is supposed to be simple in view of their form, existence and
unigueness.

14.2 Inverse Laplace Transforms :

Let the symbol L_l{ f (S)} denote a function F (t) whose Laplace transform is f ().
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Thusif L{F(t)} = f(s)

then F(t)= L_l{ f (S)}

For instance, as seen from the table of Laplace transforms in Lesson 13,

) 1
L 1{@} = e = Fy(t) (say) ---------- (1)

kt

This correspondence between Fy(t)and the function of 's' shows that Fi(t)=€" is an

1
inverse transform of s—k

But another function

Fo(t)

gkt | O<t<2 andt>2
1 fort=2 (2)

has the transform as

) 2 )
L{F,(t)} = (j)e‘st Fyo(t)dt = (j)e‘St.ekt dt+£e_5tekt dt

and this is the same as L{Fy(t)} in (1).

The function F, (t) could be chosen equally well as one that differs from Fl(t) at any finite

set of values of t or even at such an infinite setas t =1, 2, 3, .... . So we have seen that for two

different functions F(t) and F,(t), the transform is the same.

However, a theorem on the unigeness of the inverse transform, due to Lerch, states that if

two functions Fy(t) and F,(t) have the same Laplace transform f (s), then

Fo(t)=F(t)+N(t)

T
Here N(t) is a null function such that (J) N(t)dt = O for every +ve 'T".

In view of this theorem, we can say that the inverse transform is essentially unique since a
null function is usually of no importance in the applications.
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In particular, if two continuous functions have the same transform, they are completely
identical.

Thus all the formulae or properties derived in lesson 13 hold good for inverse transforms
also.

For example, we may state the first translation property as

“The substitution of S—a for the variable s in the transform f () corresponds to the
multiplication of the object function F (t) by the function g2t *.

Proof : We have

f(s-a)= O(Ee_(s_a)t F(t)dt = CZe_St [eat F (t)} dt

~L{e F (1)}

Similarly all the other properties can be thought of in terms of inverse transform.

14.3. Convolution :

The Convolution F'G of the function F(t) and G(t) is defined as the function

F(t)*G(t):(})F(l)G(t—l)dﬂ, ___________ -

(This is also called Convolution or Faltung integral)

The Convolution operation is commutative :
. t
F(t) G(t)=[F(1)G(t-2)da
0

0

:—{G(u)F(t—u)du Putt—A=u, ..di =—du
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Some more properties are

F(t) [G()+H(t)] = F(t) G(t)+F (1) H(t)

Proof : We have, by definition

* t
L{F (1) 6(t)] = L{(I)F(t—/l)G(l)dl} _________ @)
Consider the unit step function

1 A<t
U(t-21)= 0 At With 2 as variable ------ (5)

1 t>1 '
or o t< i with 't" as variable ------ (6)

Using (5), Equation (4) can be written as

L{:j)F(t—l)G(ﬂ,)dl} = IEF(t—A)G(A)dA}e‘S dt

=°§D§ F(t-1)G(4) U(t—i)dl}e‘g dt

(by interchanging the order of integration)
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Because of the presence of U (t—l) , the integrand of the inner integral with respectto t is

identically zero for all t<A from (6). Hence, the inner integration effectively starts not at t =0, but

at t=A . Therefore, (7) becomes
B T R T Cp—
0 0 A

Now in the inner integral on the right of (8),let t—4 =7 and dt = dr.

Then L{:j)f(t—ﬂ,)G(l)dﬂ,} _ IG(A)EF(T)GS&M) df}d N

=?G(},)e_sj“ {?F(r)e_sr dr }dl
0

:E F(r)e™ dr}ﬁG(l)e‘s’l dz }

Note : The advantage of this theorem is seen to be appropriate while finding the inverse Laplace
transform of a product of functions of s for which the inverse Laplace transforms of individual
factors are known. This can be seen in forth coming examples.

14.4 Partial Fraction Methods :

For a given function of s, wherever it is possible, one can use the usual methods of putting
that function into partial fractions so that the inverse Laplace transforms can be found using the
formulae or the table of Laplace transforms.

However, the following Heaveside expansion theorems are of great utility in this connection.
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_ S
Theorem -2: If F(t)=L l{ P( )q(s)} where p(s) and q(s) are polynomials and the degree of

q(s) is greater than the degree of p(s), then the term in F (t) corresponding to an unrepeated

linear factor (s— a) of q(s) is

b(2) e or equally well Meat ------------ 10
q(a) qually (a) (10)

where h(s) is the product of all the factors of q(s) except (s—a).

P(s)
Proof : From the familiar partial fraction decomposition of q(s) , We can write

Since (s—a)is an unrepeated factor of ¢(s), ¢(s) remains finite as s approaches a.
Multiplying (11) by (s—a) and taking the limitas s — a, we get

(s=a)pls)_ \ _P(S) +(s—a)¢(s
S a(s) san(s)/(s—a) sEa[A( 9(s)]

P A
or s>aq(s)/(s—a) 7T (12)

The limit of the numerator in (12) is obviously p(a) . The denominator is an indeterminate
guantity at S=a and hence applying |’ Hospital's rule.
a(s) _d(a) _ a(s)

We get Sgaa = 1 - q(a) or h(a) if ( s—a) factor is cancelled in ~a
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A

So, while taking the inverse Laplace transform of (11), itis clear that the fraction term s_a

. At — p(a) ot p(a) ot
gives rise to the term q’(a) h( a) as asserted.

4l p(s
Theorem - 3 : 1f F(t)=L 1{%} where p(s) and q(s) are polynomials and the degree of

q(s) is greater than the degree of p(s), then the terms in F (t) corresponding to a repeated

linear factor (s—a)2 in g(s) are

h(r—l)(a)+h(r—2)(a).t +M.tr_2+h(a)tr_l &
I R I |

where h(s) is the quotient of p(s) and all the factors of q(s) except (s—a)" .

Proof : From the theory of partial fraction, a repeated linear factor (s— a)r of q(s) givesrise to the

component fractions.

Let ¢(S) be equal to the sum of the fractions corresponding to all the other factors of q(s).
Then, we have

Ao + A + Ar+¢(s)

(s-a) " (s-a)

or  h(s)=A(s-a) "+A(s-a) “+...A_i(s-a)+A +(s-a) ¢(s)
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Again,

setting S=a, we get
h'(a): AY—l
Continuing in this fashion, we obtain

v (a)-12A _,
" (2)=I3A s

or A_= k=0,1....r-1

P(s)
The terms in the expansion of ﬁ , Which correspond to the factor (s— a)r one, therefore.

@) 1 +h(r_2)(a) L G S + h(a) -
-1 s-a  |r-2 (s-a)® 1 (s-a)! (s-a)

-1
-1 1 _ tn at
Recalling that L {(Sa)n }_ n—1e itis evident that the terms in F (t), which arise

from these fractions are

!h(rl)(a) 1 h"2(a) ¢ h(a) t"2 n G

1 sal o [1+ ........ +—|_1 Tt (a)r_1 e
r-1

as asserted in the Theorem.
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p(s)

Theorem - 4 : If F (t):L_l{@}, where p(s) and ¢(s) are polynomials and the degree of

q(s) is greater than the degree of p(s), thenthe termsin F (t) which correspond to an unrepeated,

irreducible quadratic factor (s+ a)2+b2 of q(s) are

—at

eT(h cosbt + h sinbt) -------- (14)

Where h, and K are respectively, the real and imaginary parts of h(-a+ib) and h(s) is

the quotient of P(s) and all the factors of q('s) except the factor (s+ a)2+b2.

Proof : An unrepeated, irreducible quadratic factor (s +a)2+b2 of q(s) gives rise to a single

As+B p(s)

fraction of the form (S+ a)z Y in the partial fraction of expansion of ﬁ If ¢(S) denotes the

fractions corresponding to all the other factors of q(S) , We can write

p(s) _ h(s) _  As+B +4(9)

a(s) (s+a)2+b2 B (s+a)2+b2

or h(s)=As+ B+[(s+a)2+b2}¢(s)

substituting s=—a-+ib which makes (s+ a)2+b2 vanish, simplifies the above identity as
h(-a+ib) = (-a+ib) A+B

or (h +ih) = (-aA+B)+ibA
. h =—aA+B and h =bA

’ Al gbhrah
b’ b
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Thus the partial fraction corresponding to the quadratic factor (s+ a)2+b2 is

As+B 1 hs+(bh +ah)
(s+a)2+b2 b (s+a)2+b2

bl (s+ a)2+b2 (s+ a)2+b2

1| (s+a)h ,_ bh

The inverse of this expression is evidently
1 , —at
B(h cosbt +h, sinbt)e

Note : There is another theorem on repeated quadratic factors. But, due to its complexity and limited
usefulness, it is not dealt with. When the need arises to deal with repeated quadratic factors, convolution
theorem can be applied.

14.5 Examples :
[min

m+n

1. Using Laplace transform techniques. prove ,B(m, n)

tom-1 n-1
Solution : Let G(t) :éx (t-x)" ~dx
which gives beta functionat t =1

Now L{G(t)} = L{tm_l} L{tn_l} applying convolution Theorem

-1
or G(t): L m+




ACHARYA NAGARJUNA UNIVERSITY 11 CENTRE FOR DISTANCE EDUCATION

_ |r_nm tm+n—1

m-+n

’ xm_l(t - x)n_1 dx

Putting t=1, we get

Im [n
m+n

xM-1 (1- x)n_1 dx =

B(m,n) =

o —r

2. Solve the differential equation Y (t)+2Y'(t)+Y (t) =te™ for which Y(0)=1Y"(0)=-2
Solution : Taking the Laplace transforms on both sides of the differential equation, we get

1
(s+1)2

[52 y(s)—sY(O)—Y'(O)}r2[sy(s)—Y(O)}+ y(s)=

using the given intital conditions,

1
(s+1)°

s?y(s)-s+2+2sy(s)-2+y(s)=

2 _ 1 +s
(s+1) y(s)—(Sle)2

1+s
(s+1)* (s+1)°

or V(8=

_ 1 1 1
_(5+1)4 (s+1) (s+1)2 ('-'S:(s+1)_1)

Taking inverse Laplace transforms, we get

Y(t)L{(sfl)“}“{sil}L{<S+11>2}

et -t -
= 3 +€ " —te " ysing first shifting property.
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s+1
3. Whatis F(t) if L{F(t)} = InSTl.

Solution : Giventhat f (s)=In(s+1)-In(s-1)

_df(s): 1 1
T ds s+l s-1

= L{-t F(t)} (from (14) of lesson 13)

11 41

tF(t)=Lt—-1t =

or () s+1 s-1
_et_d

4. Find F (t) if T(s)=

1%
Solution : From equation (16) of lesson 13, we have seenthat L = | f (u)du T
S

© udu
Now s (u2—1)2

- — Put u?-1=v: 2udu = dv




ACHARYA NAGARJUNA UNIVERSITY 13 CENTRE FOR DISTANCE EDUCATION

2 2 s—l_s+1 t
L PRS2 N
or F(t)—4(e e )_Zsmht
S
5.1f f(s)= whatis F(t) ?
) (s+2)2(52+25+10) ®

Solution : We know the Heaveside expansion theorem as one for a repeated linear factor and
another for a unrepeated quadratic factor as follows.

p(s h(s
i) If f(S)z q((s)) = ( )2 where (S—a)2 is a repeated linear factor, then the terms in

(s-a)

F (t) corresponding to a linear factor are

n

p(s)_ h(s)

i) If f(s)= a9 :(s+ a)2+b2 where (s+ a)2 + b? is an unrepeated quadratic factor,

then the terms in F(t) corresponding to that factor are

e & .
T[h cosbt +h, sinbt] -------- (14)

where h, and h respectively the real and imaginary parts of h(—a+ib)

S
In the present problem, in case (i) h(s) :m Thenthetermsin F (t) corresponding

to the repeated linear factor (s+ 2)2 are
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{”(‘2) . h(a)t} &t

|1
2
s°+2s+10)1-s(2s+2 2
Now h’(s):( ) (2 ): s“+10 ;
(32+23+10) (SZ+25+10)
6 2
~h(-2)=—:h(-2)=-—
( ) 100 ( ) 10
1.3 2
. Tty
s (13) becomes( 5 +50je
Similarly in case (ii)
h(s)= S 5 a=1,b=3
(s+2)
-1+3 -1+3

“h(-a+ib)= (-1+3 +2)2 ) (3 +1)2

_-1+3 (-1+3i)(3i+4) -13+9;

~ 6i-8 2(-9-16) ~50
13 9

~h==— h=-—

50" "= 50

So (14) becomes

-t
e |9 cos3t+Esin3t
3| 50 50

_ 2t _ :
(t):(3 10t)e +e‘t( 9cos3t+13sin3t)
50 150

Note : One can throw the given function f (S) into partial fractions by direct method and get the
inverse Laplace transform.
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6. The electric current | (t) and the charge Q(t) on the capacitor in a LCR circuit satisfy the
conditions

d R QL
Ldt+RI+C_E0
t
Q=[1(A)da
0

Qo=1(0)=0; Eg = constant

(a) Derive the formula

| :i e_bt Sina)lt
21
R >, 1 R
where oL and @1 Lo 4L2

2
> R° 1
(b) If k =E—L—C>O, show that

=B gt gnn ke
kL

Solution : The given differential equation is

LI'(t)+Rl (t)+@:EO

whre Q(t)=]1(A)dA =1(t) 1

O — ~

Taking Laplace transforms on both sides, we get the subsidiary equation as

L[si(s) -1 (o) +Ri(s)+ ) - Bo

Cs S
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or i(S)(LS"FR‘Fij:E
cs) s
§ CE, CE, 1
~i(s)= 5 = B 1
Lcs“+Res+1 LC 2 R . 1

2 LC

(e RfA LR [ R0
2L Lc 412) \Lc 412
2 _Et
Jym— Hi RZH A
L NS o0z

as asserted in part (a) of the question.

2

— ——>0, i
When a2 Lo then (i) takes the form
R_1
2
i (S):E. 4° Lc 1
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4% Lc

N - ol R 1
..I(t)_L{ = 1)3 h[(m_z

as required in (b) of the question

718 T(s)= 5. find F(t).

(sz+4s+13)
Solution : We can write

1 1
(%) [(s+2)2+32}2 (s+2)2+32 (s+2)2+32
By first shifting property, we can write
Ll (s)=F(t)=e2 LT
(52+32)

_g2 1 [SZiBZJ(SZiBZ)

I e S o | R |
-€ {L (32+32J . (sz+32

:ig2t [sin3t *s'n3q

e—2t t

0

2 t§n(6A—3t)—cos3t
:eg jsn( 2) 2 42
0

H by convolution theorem.
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2t [ t
Sin(6A -3t

_E ( ) -1 cos3t}
18 | 6 120
2t

:e_ ﬂ —t CosStil
18| 3

8. Solve the problem
Y”(t)-2Y"(t)+5Y'(t)=0

¥(0)=0,Y'(0)=1 Y(74)-1

Solution : Taking Laplace transforms on both sides of the differential equation, we get

s? y(s)—s—k—2s?y(s)+2+5sy(s)=0 where Y"(0)=k

k-2+s

or y(s)= s(

Y (t)=(k—2)L 1L
-tk

.'.Y(t):(k—Z){l*EsinZt

(k-2)
2

} e+l
0

But
0

& —2s+ 5)

t +A o
e sin24dA =1,

:(k_z)l

1

et

1

S(s-1)"+22

+t

+—sn2t
2

+1

: e .
sin2 dl+7sm2t by Convolution Theorem

t .
Je+l el2). dl
0
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. to
. e(+1+2|)/1
M 1142
0

=In L .[e(+1+2i )t —1] = Im+1_2I [e“ c052t+e+tisin2t—1]
5

=Im.(l_—52|)[(eth cosZt—1)+i e“sinZt}

e+t

= —sinzt—g(e+t coszt—l)
5 5

k-2 - !
So, Y(t):g @ gnzt- 22 g e 2K2, € g
2 5 5 2 5 2 2
- k;2+et[k+33in2t—%0052t}

since Y(%):l it follows that

k-2 e%
1=—— + (k+3-2k+4)

5 1042

T
78
or u e_(7 k): or k=7

T1042

Hence the solution is
Y (t)=1+€(sin2t—cos2t).

Note : One can also proceed with the problem by putting into partial fractions by direct method.

9. Find the general solution of the differential equation Y”(t)+ k2Y(t):F(t) in terms of the

constatnt k and F(t).
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Solution : By taking the Laplace transforms on both sides, we get
s?y(s)-sY(0)-Y'(0)+k?y(s)=f (s)
where Y(0) and Y'(0) are arbitrary constants.

k s Y0 k

S0 y(s)zé 2 +k? f(s)+Y(O)82+k2+ kK & +k?

.'.Y(t)=%sinkt* F(t)w(o)cosm@smkt

t
.-.Y(t):%(j)sink/l F (t—2)dA+Cy coskt +C, sinkt

whre C; and C, are arbitrary constants is the general solution :

t
10. Solve the integral equation Y (t)=at +(J)Y(ﬂ,)sin(t —21)da

Solution : We can write the equation as Y(t)=at+Y(t)* sint

Then, by taking Laplace transforms on both sides, we get

a s+l (1.1
or Y(5)=—2 > =4 ?Jfg

[7)]
[7)]

.'.Y(t):a(t+%t3j

which is the solution of the given integral equation.
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14.6 Summary of the Lesson :

In every application of Laplace transforms, both Laplace transforms and their inverses will
be used. So this lesson is continuous to the previous lesson. Convolution theorem is the highlight
of this lesson. Three Heaveside expansion theorems are given. These will be helpful when the

direct method of putting the given f (S) into partial fractions involves complexities. Different types
of problems have been worked.

14.7 Key Terminology :

Lerch theorem - Convolution - Heavside expansion - integral equation.

14.8 Self-assessment Questions :
1. Find the inverse Laplace transforms of

11 e °
M gan g (i (s+1)(52+4) (it (52 +a2)(52+b2)

2. Solve the differential equation

v(4) (t)+Y"(t) =cost giventhat Y(0)=Y'(0)=Y"(0) and Y"(0)=k
3. Solve the integral equation
t

F (t)+2] F (x)cos(t—x)dx = 9e*
0

4. Obtain the solution of
X"(t)+4X'(t)+4X (t)=4e? sothat X (0)=—1, X'(0)=4
5. Find the solution of

Y”(t)—sz(t):F(t) interms of k and F (t) where Y(0)=Y'(0)=0, k0.

14.9 Reference Books :
1. C.R. Wylie Jr. : 'Advanced Engineering Mathematics' - Mc-GrawHiill
2. R.V. Churchill : '‘Operational Mathematics' Mc-Graw Hill, 1958
3. B.S. Rajput : 'Mathematical Physics' Pragati Prakashan 1999.
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Unit - IV

Lesson - 15

FOURIER SERIES

Objective of the lesson :

*

*

*

To define Fourier Series for a function having a period of 24

To derive Fourier series for even and odd functions and for functions of arbitrary period.
To explain and treat half-range Fourier expansions.

To bring out alternative forms of Fourier Series.

To derive Fourier Integral as a limit of the Fourier Series.

To define generalized Fourier Series.

Structure of the lesson :

151
15.2
15.3
154
155
15.6
15.7
15.8
15.9
151
151
151
151

Introduction
Periodic Functions
Definition of Fourier Series
Fourier Series for even and odd functions
Functions of arbitrary period
Half-range expansions
Alternative forms of Fourier Series
The Fourier integral
Orthogonal Functions and generalized Fourier Series
0 Summary
1 Key Terminology
2 Self Assessment Questions

3 Reference Books
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1.1 Introduction

Often, we come across the study of physical systems subjected to periodic disturbances.
In many cases, however, the forces such as torques, voltages or currents which act on a system,
although periodic are by no means so simple as pure sine and cosine waves. Any complicated

periodic function f (X) of period 25 that appears in applications can be represented by a Fourier
trigonometric series and formulae for the coefficients fo such series can easily be derived such

that the series convergesto f (X) . Later, the results to functions of arbitrary period can be extended.

Since many practical problems do not involve periodic functions, it is desirable to generalize
the method of Fourier Series to include nonperiodic functions. Roughly speaking, if we start with a

periodic function f; (X) of period T and let T approach infinity, then the resulting function f (x) is

no longer periodic or is of infinite period. Then f (X) is represented by Fourier integral rather than
Fourier Series.

15.2 Periodic Functions :

A function f (X) is said to be periodic if it is defined for all real x and if there is some
positive number T such that

f (x+T) = f(x) forall X ------------- (1)

The number T is then called a period of f (x).

The graph of such a function is obtained by periodic repetition of its graph in any interval of
length T.

From (1), it follows that, if n is any integer f (x+nT) = f(x) forall x.

so that any integral multiple nT (n=0) is also a period.

Familiar and simple examples are sine and cosine functions The series which will arise in
this connection will be of the form.

8, + (8, COSX+a, COS2X +......... ) +(bSinx+b,sin2x+......) e 2
where a,,3,,a,........ B o Y o TR are real constants. Such a series is called a trigonometric series

and the a, and b, are called the coefficients of the series. Each term of the seires(2) has the

period 27 . Hence if the series converges, its sum will be a function of period 27 .
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15.3 Definition of Fourier Series :

Let us suppose that f (X) is a periodic function with period 27 which can be represented
by a trigonometric series

f(x)=a,+ % (a,cosnx+b, sinnx) .. 3)
n=1

Given such a function f (X) , we determine the coefficients a, and b, in (3).

We first determine a,. Integrating on both sides of (3) from —z to +7 , we have

| f(x)dx = T[a0+§(ancosnx+bnsinnx)}dx
s - n=1

If term by term integration is allowed, we obtain

T f (x)dx = & T dx+ 3 [an T cosnxdx +h, T sinnxdx}
- n=1 - -

T

The first term on the right equals to 27 a,, while all the other integrals are zero. Hence out first
result is

8 =— | f (x)dx

Which is nothing but the area under the curve of f (X) from —z to +7, divided by 27 .

Secondly, we determine a,,a,,........ a, by a similar procedure. We multiply (3) by cosmx
where m is any fixed positive integer and then integrate from —x to r, finding

i (x) cosmxdx = | [ao+ 5 (a, cosnx+bnsinnx)}cosmx OX oo (5)
n=1

-7 -7

Term by term integration of equation (5) gives

T f (x)cosmxdx = a, ijr cosnxdx+ 3 a, T cosmxcosnxdx+ 3, b, T COSMX Sin nxdx

r n=1 n=l _x

On the RHS, the first integral is zero and so is the last integral as the integrand is an odd
function. In the second term,
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b3 1~z 1~z
[ cosnx cosmxdx = > [ cos(n+m)x dx + > [ cos(n—m)xdx
= 0 + 0 for nm
= 0 + E for n=m
= > or N=
1=
.(5) becomes &, =— (IR — (6)
m=12, ...
Lastly, we determine b,,b,,...... in equation (3). If we multip;y (3) by sinmx where m is any
fixed positive integer and then integrate from —z to 7, we have,
i (x)sinmxdx = | [ao+ 5 (a, cosnx+bnsinnx)}sinmx dx
_r - n=1
:aozjzsinmxdx+§an’jzcosnxsinmxdx+ fbn ]zsinnxsinmxdx _______ @)
- n=1 - n=1 -

On the RHS of (7), the first integral is zero and the next integral vanishes as the integrand is odd.

In the third term, ]Z sinnx sinmxdx = % 7JT cos(n—m)x dx — % 7JT cos(n+m)x dx
=0 - 0 when n#m
1
= 5277 - 0 when n=m
- (7) gives us
1= .
b, =~ ] f (x)sinmx dx m=12...... (8)
Writing nin place of m in (6) and (8),
we have altogether the Euler Formulae
(a) 1 T f (x)dx
%ﬂ' -
(b) a = - Jﬂ f(x)cosnxdx |_______ )
© b =1f f (x)sinnx dx
T -n
n=12...
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The series (3) is then called Fourier seires corresponding to f (X) and its coefficients
obtained from (9) are called Fourier Coefficients of f (x).

Note : Because of the Periodicity of the integrands, the interval of integration is (9) may be replaced
by any other interval of length 27 .

With some mathematical rigour, as laid down by Dirichlet's conditions the definition of Fourier
series can be stated as follows :

'If a periodic function f (X) with period 27 is piecewise continuous in the interval —7 <X<7x
and has a left and right hand derivative at each point of the interval, there the corresponding Fourier

Series (3) with coefficients given by (9) is convergent. Its sum is f (X) except at a point X, at
which f (X) is discontinuous and the sum of the series is the average of the left and right handed

limits of f (X) at X,.

Thus, if the Fourier series corresponding to a function f (Xx)convergesto f (X), the series

will be called the Fourier series of f (X). Thenwe saythat f (X) is represented by Fourier series.

Example (1) :

Find the Fourier series of the periodic function f () given by

-k - 0
f(x)= K gi))((iﬂ and f(x+2r7)= f(x)

(Functions of this type may occur as external forces acting on mechanical systems, electromotive
forces in electric circuits, etc.,)

Solution :
Let the Fourier series be

f(x)=a + > (acosnx+h,sinnx) ... 3)
n=1
where
1 =
=— [ f(x)d

3 2 IRIGL,

a, == f(x)cosnx dxy—————- 9)
T -n

b, =1T f (x)sinnxadx
T -n
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1 T 1 0 T
=— [ f(x)dx=—/| [ —kdx + [k dx
then & =5 (9| T o e
:i[—kﬂ' +kz]=0
2r
or the area under the curve of f (X) between —z and 7 as can be seenin Fig. 1(a)

is zero and thereby a,=0.

Af(X)

(b) Thefirst three partial sums of the corresponding Fourier series

Fig. 1 of Example 1
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Again &, = 1 ]T f (x)cosnx dx

T —x
1|0 P

=—[ | (—k)cosnx dx + [(k)cosnx dx}
TL-n 0
k {{ sinnx}0 {sinnx}”}

=—1| - +
T n | noJ,
k

=—10+0t=0
k{0 + o

. 1= .
Similarly bn=; [ f(x)sinnx dx

_1 ?(—k)sinnxdx + [k sin nx dx}

T L= 0

_k —Tsin(—nx) dx + Jsin nxdx}
T 0 0

:Z—kTsnmdx=2—k. —CoSTX
T o T n |

:—Z—k(cosnﬂ -1)= 2
Tn nr

(]

o ..
(..e.)bl—ﬂ,bz—o,bg_gﬂ,b4 (0 R

(i.e.) All p's with even suffixes are zero.

So the Fourier series(3) for the given function is

f(x)=4—k(sinx+lsin3x+%sin5x+ ...... j
T
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Note : The partial sums are

81:7sinx first term only

S = 4—k(sin x+%sin3xj= Sum to first two terms
T

S, =4—k(sin x+%sin3x+% sin5xj: Sum to first three terms.
T

These partial sums are celarly depicted in the graph as shown in Fig. 1b for a better understanding of

the convergence of the series. We notice that at x=0 and 7, the points of discontinuity of f (X) (Fig

1a), all partial sums have the value zero (Fig. 1b) as it is the arithmetic mean of the values of f(o_)

and f(0,) forx=0and f(7_) and f(7,) for X=7 respectively. Furthermore, at XZ%, the sum

of the series is given by

Example - 2

What is the Fourier expansion of the periodic function whose definition in one period is

f(x)

_0 —r<Xx<0
T 8§nx  O<x<r

Hence show that

T2 1 1 1 1

= - — 4+ — - —

4 13 35 57 79

Solution : Let the Fourier Series be as in equation (3) with the coefficients given by equation (9)

T

Then 8, = %I f (x)dx
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1[0 .
:—[ [ 0dx+[sin xdx}
2| % 0

1 x 2
= —[-cosx], =—=

1
27 2r =«

[ f (x)cosnx dx

0 Ve
[ | 0 cosnxdx+ [sinx cosnx dx}
- 0

B % {_ % {cos(l-n)x , cos(1+ n)xH”

(1-n) 1+n

B %{cos(n—nn)+cos(n+nﬂ)_( 11 H

+
1-n 1+n 1-n 1+n

+ 2
1-n 1+n 1-n

~ 1(—cosn7r —coshr 2 j

o
_cosnr +1
—ﬂ(l—n)z for n=1
T in2 §
aizijsinxcosxdx=Sln X =0
o 2 |,
1z :
b, == [ f(x)sinnx dx
T —x
10 : 1z . .
=— [ 0.sinnx dx+—[sinx sinnxdx
T = T o
_1[1(sin(1-n)x sin(1+n)x ”_
=13 1n 1rn = for n=1.
b1=1]r$inzxdx=i[§—smzx} 1
o w2 4 |, 2
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.. The required Fourier series is

1 sinx 2(0032x cos4dx cos6x j
f(x)==+ + +

-= -
T 2 3 15 35

T
If we put XZE , then

L3 1 1 2 l 1 l 1
f =l="4——r| —+———+——.......
2 T 2« 3 15 35 63

-2 1 1 1 1
or =+
4 13 35 57 79

15.4 Fourier Series for even and odd functions :

We know that a function y=g(X) is said to be evenif g(—x)=g(x) for all x. The graph of
such a function is symmetric with respect to the Y -axis.

A function h(X) is said to be odd if h(—x) =—h(x) forall x
The function cosnx is even, while sinnx is odd function of X.

If g(x) is an even function, then

_? g(x)dx = ZEg(x)dx (9 even) ------------- (10)

If h(x) is an odd function, then

[ h(x)dx =0 L E— (11)

—-a

It is obvious that the product q=gh of an even function g and an odd function h is odd.

Then the Fourier series of an even periodic function f (X) having period 2 is a Fourier
Cosine Series.

f(x)=a,+ X a, cosnx R ) — (12)
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with coefficients

aﬂzi]zf(x)dx, an=gijrf(x)oosnxdx n=12.. (13)
To To

The Fourier series of an odd periodic function f (X) having period 25 is a Fourier Sine

Series.
f(x)= 2, b, sinnx (G ) — (14)
with coefficients
27 .
b,==[f (X)SINNXOX ermeemeeeeeee (15)
T O
Example (3) :

Show that f (X):x2 (—m<x<m), f(x+27)=f(X) has the Fourier Series

2
T

f(x)== —4(cosx—10032x+50053x— ........ j
3 4 9

Hence show that

Solution : Since the given function is an even function, the Fourier series consists of only cosine
series.

(.e.) f(x)=a,+ éan cosnx (f even) ---------- (12)
. 1z 27
with a,=—1] f(X)dx, a,==] f(x)cosnx dx N=1,2,3,.... —ereeme (13)
T o T O
1z , 10 2° #?
=— d = — — = — =
Now % /4 {)X X 71'{ 3 l 3 3

a,=— [ x*cosnxdx =

2 2{{XZSH‘]I’IX} —]ESlnnX.ZXdX}
T o T n J, o n
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_ j{[X.—cosnX} +1’fcosnx.1.dx}
n N J MNo

- () + 0= (-

n 4
n2

. The Fourier series is
2
f (x):% —%cosx + iZCOSZX - Bi;cos:%x— ......
2
I —4(cosx—%0032x +%cos$x— ......... j

Putting X=7 , then the above series becomes

2
f(n):nzzﬂ——4(c05n—l00527r+lc0337r— ........... j
3 4 9
? 11 1 1
— =+t —+...= =
or 6 49 16 e

15.5 Function of Arbitrary Period :
Suppose that f (t) has an arbitrary period T. Let us introduce a new variable X such that

Ut E SO “ la‘ _l ———————————— ( IZI)

T
Then X=x7m corresponds to t=i5, which means that f , as a function of x, has period 27 .

Therefore Fourier Series of the form
f(t)=f T x :a0+§(ag1cosnx+b STl ) I (15)
2 n=1 "

can be obtained.
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The Coefficients can be derived from (9) in the form

1 = T
=— [ f|l—x]|d
% 27[-& (ZEXJX

a, = 1]Z f (licosnx dx
T -

2w

2

1= T .
b,=—] f(—x} sinnx dx
T -n
We could use these formulas directly, but the change to t simplifies calculation. Since

2w 2
T we have T ,

and the interval of integration corresponds to the interval

Consequently, we obtain the Euler formulas

1 T2

=— | f(t)dt
@ =7 ] f(
272 2nrt
=— [ f(tjcos—dt = -
) &=z [ f(t)cos——d (16)
272 . 2nrt
(c) bn—?ilezf(t)sm?dt n=12,....

for the Fourier coefficients of f (t) . The Fourier series (15) with x expressed in terms of t becomes
® 2nz . 2nw
f(t)=ao+;1(an COS?anS'”?tj ----------- (17)

The interval of integration in (16) may be replaced by any interval of length T, for example, by
the interval 0<t <T.
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We now obtain Fourier series of an even function f (t) having period T as a Fourier
cosine series.

© 2nrt
fM=%ﬁ£%w&74 (f even) --—----mm (18)
with coefficients

4712 2Nt
=— f(t)dt, = — f(t —tdt,n=12...... -————
% == (t)dt, a, = (t)eos— n=1 (19)

Similarly, the Fourier series of an odd function f (t) having period T is a Fourier sine series.

o . 2N
f(t)= 2 b sn—t (f 0dd) --emmsememees (20)
with Coefficients
4712 . 2N
=— [ f(t)sn—-tdt = e
b, = [ f(t)sin—= (21)

Example - 4 : Find the Fourier Series of the function

k when —-1<t< 1 T =4.
0 when 1<t< 2

f(t)=

{O when —-2<t<-1

Solution :

Af )

. ' [ L‘—E_t

2 o 1 2

Fig. 2 f(t) of the example 4.

Since f iseven, b, =0. From (19),
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12 11 k
=—[f(t)dt = =[k dt =—
% 2{) () Zg 2
2 Nz 1 (874 2k . nm
=[f(t)cos—t dt = [kcos— t dt = —sin—
& (J) () 2 J) 2 (874

2k -2k
Thus a,=0 when n is even, a“:E when n=15,9,...., and &, = E when n=3,7,11,.....
Hence

k 2k
= — 4+ —
T

f(t)

T 1 3T 1 5t
coS—t — —coS—t + —cosS—1t—+.......
2 3 2 5 2

Example - 5 : (Half-wave rectifier). A sinusoidal voltage g sin @t is passed through a half-wave
rectifier which clips the negative portion of the wave (Fig. 3). Develop the resulting periodic function

T =2

u(t) = 0 when -T/2<t<0 2r
~ |Esin ot when 0<t<T/2 ®

in a Fourier series.

Solution : Since u=0 when —T /2<t<0, we obtain from (16a)
wlo

a, =2 [ Esinetdt _E

27 o T

and from (16b) with x=wt and y=not,

an:

CHES

nlo . E
| Esinet cosnemtdt = @
0

rlo— | .
o (j)[sn(1+n)a)t+sm(1—n)a)t]dt

When n=1, the integral on the right is zero, and when n=2,3,.....

- el

_E —cos(1+ n)n+1+ —cos(1-n)z +1
2 1+n 1-n
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When n is odd, this is equal to zero, and for even n we obtain

an=£{ 2 i 2 Jz_ 2E
1+n  1-n (n-1)(n+1)x (n=24,...)

u(t)

RN

/o 0 m o t

Fig. 3. Half-wave rectifier

In a similar fashion we find from (16c) that b, =E/2 and b, =0 for n=2,3,...., Consequently,

u(t) = E + Esincot - E(iCOSZa)t + icos4cot+ ..... j
Vs 2 7 \1.3 35

15.6 Half-Range expansions :
Let f (t) have period T=2l . If f iseven, we obtain (18) and (19) the Fourier cosine series
f(t)=a+33, cosnl—”t (f even) —-rormemmm- 22)
with coefficients
a, =] f(t)dt aﬁ%!{ f (t)cosnl—”t o[ T S — (23)
Similarly, if f is odd, we obtain the Fourier sine series
f(t)=2b,sin "t L — (24)
with coefficients

b, =|—2i f (t)sjnnl—”t d. T Sp— (25)
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f®

|

(a) The given function f (t)

()

| | > [
| |

(b) f (t) continued as an even periodic function of period 2| .

f,(t )A

T | — 1

| —

(c) f (t) continued as an odd periodic function of period 2] .

Fig. 4 Periodic continuations or extensions.

Now (23), and (25) use only the values of f(t) between t=0 and t=I. Hence, for a

function f (t) given only over this interval, we can form the series (22) and (24). If f (t) satisfies
the conditions for a function to be represented by Fourier series, both series will represent the
given function in the interval O<t<I| . Outside this interval the series (22) will represent the even

periodic extension or continuation of f having period T=2| (Fig. 4b) and (24) will represent the

odd periodic continuation of f (Fig. 4c). The series (22) and (24) with coefficients given by (23)

and (25) are called half-range expansions of the given function f (t) . They will have important

applications in connection with partial differential equations.
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Example - 6: Find the half-range expansions of the function

shown in Fig. 5

1| 2k 172 2k !
Solution : From (23), ao:—[l_ !)tdt + Tllfz(l_t)dt}

Now by integration by

112
2{2—k | toost dt + 2k
[ o
parts,
12 n It .
| tcos—tdt = ——sin—tt
0 I nr [

2,

f(t)= 2

(I-t) when I—<t<|
| 2

when O<t<|—

0 /2

>t

Fig. 5 The given function in Example 6.

2nr

|2

112

0

Ij (I —t)cosnt—ﬂt dt

1 12
-

nmw o

(COSE - 1)
2

0

(a) Even continuation
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K

(b) Odd continuation

Fig. 6. Periodic continuations of f (t) in Example 6.

Similarly,
| 2 2
j(l—t)cosﬂtdt __ sn% _ 2' > cosnz —cos
12 I 2nr 2 nnzm 2
By inserting these two results, we obtain
4k nz
=——| 2c0S— —cosnr -1
% nzﬂ'z( 2 J
Thus,
_ —16k _ —16k -16k

22712’86_62712’ 3y W ......
and a,=0 when n=2,6,10,14,..... Hence the first half-range expansion of f (t) is

f (t):E _ 16K izcosz—ﬂt + izcos6—7[t+ .....
2 2 [ 3] |

T2
This series represents the even periodic continuation of f (t) shown in Fig. (6a)

Similarly, from (25),

and the other half-range expansion is
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&1 .« 1. 3n 1 . 5z
f(t)=—| =9n—t — =9Nn—t + —SnN—t—+........
(1) nz(lz TR 2k R J

This series represents the odd periodic continuation of f (t) shown in Fig. (6b).

Example - 7 : Find the half-range expansion of the function f (t):t—t2 O<t<1

Solution : (i) The half-range cosine expansion is obtained by first extending t —t> from the given
interval (0, 1) to the interval (-1, 0) by reflection in the Y -axis and then taking the function thus
defined from -1 to +1 as one period of a periodic function of period 2p=2. (Once we understand

the reasoning underlying the procedure we need give no thought to the extension but can write
immediately).

2

1
cosntt t . 2t 2 . tc .
=2|| —5—+—sinnzt | - | — coshat ———=sinnrt +—sinnzt
nre n°r nr o

n® n®
2(1+cosnr)
=——— 53— nh#0
n?z

—}Jl(t—tz)dt = E_ﬁ 1 —1
% 1o 2 30 6

Hence it is possible to represent f (t) =t—t? for O<t<1 by the series

4 (cosZnt cosdnt cos6rt J
+ + +

1
f(t)==- —
() 6 7x° 4 16 36
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(ii). Similarly, the half-range sine expansion is obtained by first extending the given function

t —t2 to the interval (-1, 0) by reflection in the origin and then extending periodically the function thus
defined over (-1, 1).

21 2\ nrt
ca = =—[(t—t")sin—dt
~a,=0 and b, 1({( ) 1

r 1
innrt t innst 2cosnsrt nrt

5 (92 7; _ cosnhr 'tj _(sz 7; ot C(;S 37r _ cosnhr tzﬂ
n°r nr n“rz n’r nr

0

nr n® 3 nr n® 3

_ Z(ﬂj ) [2(cosn7r—1)_ cosnnﬂ _ 4(1-cosmr)

So it is also possible to represent f (t) for O<t<1 by the series

; 8 (sinzt sin3rt sSinbrt
(t)=—3 1 + > + 15 i | e (28)

T
(iii). (Series (27) and (28) are by no means the only Fourier series that will represent t —t?
on the interval (0, 1). They are merely the most convinent or most useful ones. In fact, with every

possible extension of t—t2from 0 to -1, there is associated a series yielding t —t? for O<t<1.)

A third series might be obtained by letting the extension as simply the function defined by

t—t2 it self for —1<t<0. In this case

a = % } (t—tz)cosnT7rt dt

-1

1
cosnztt  sinngt cosnrt 2sinnzt  sinnzt ,
= >+ - 2+—F=- t
nrzw nr Nz nz nr 71
4coshr
T M0
1
11 ; 1/t2 3 1
=—[(t-t*)dt=2|=-——| =-Z2
% 2.1_I1( ) 2{2 31, 3
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11 2\ . nrt
and b”:ﬂl(t_t )smT dt

1
sinnzt  cosnrt sinnrt 2cosnt  t2 cosnrt
= 2 2 t)- 2 2 2 3 3

n°r nr Nz n°z nr .

2cosnr
nre

Hence, for O<t<1, itis also possible to write

1 4 (cosrmt cos2zt cos3rt 2(sinzt sin2zt sin3xt
f(t)=—+— - 4 - < - n -
3 1 4 9 Vs 1 2 3

15.7 Alternative Forms of Fourier Series :

The original form of the Fourier series (17) of a function can be connected into several other
trigonometric forms and complex exponential forms.

Consider
® 2nr . 2N«
f (t):aojLEl(aﬂ cos?t+bn sn?tj __________ (17)
with coefficients
1 T/2 2 T/2 2n7T
== f(t)dt; =— f(t)cos—t dt
% T —lez ( ) & T —TIIZ ( ) T
———————— (16)
2 T/2 sn2nr
== f(t t dt
b, Tijlz ( ) T

(Now we apply to each pair of terms of the same frequecy the usual procedure for reducing
the sum of a sine and a cosine of the same angle to a single term).

Now (17) can be written as

G 2nr b . 2Nz
f(t)=a,+ X a’+b? & cosTt o gny
) n=1 \/a§+b§ T \/a§+b,f T
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:Ab+§ cos;/ncosz—mt+sinynsin2—mt
n=1 T T

or, equally well

f (t)z'%+ i A{sin&n Cosz.l.ﬂncosgn szn”tj
n=1

A+ A sin(zTﬂt ' 5nj ------- (31)

where
Po=3
A =20}
cosy, =sing, S
b,
sin;/n:cos5n:L
a2+
T
5n:E_7n

2Nz
Here A, is the resultant amplitude of the components of frequency o that is the amplitude

of the nth harmonic in (17). The phase angles y, and 6, measure the lag or lead of the nth
harmonic with reference to a pure cosine or pure sine wave of the same frequency.

Equation (30) and (31) are the representations of the Fourier series in terms of phase
angles and resultant amplitudes.

Again the complex exponential form of the Fourier series is obtained by substituting the
exponential equivalents of the cosine and sine terms into the series (17).
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We know that

o —iopt

'+ e

2nr e
cos——t = coso, t =
T 2
onr eiwnt i e—ia)nt
and sn—t =snw,t=———
T : 2
2nr
where a)n=?

2Nz . 2nw
cos——t +b, Sin——t
a, = b, =

=a, cosot+b,sino,t

eia)nt + e—ia)nt eiwnt N e—ia)nt
T3 h T
:an_le” ei“’nt +a“+len e‘i“’nt ___________ (33)
If we define
G, =& C = a,—ib, . c = a,+ib,

2 2
then, in view of (33), equation (17) can be written in a more symmetric form

f(t)= £ c &

where
a,—ib, 1/ 2T . }
= == f(t t— t) dt
C, 5 Z{T 71"[/2 (t) (cosw,t —i sinw,t)
1 T2 :
== | f(t)e'™'dt
T —TI/Z ( )
or

i2n7rt

f(t)= Scel

where - (34)
TI2 L
6== 1 f(t)e T dt
T 112

which is the required complex, exponential representation of the Fourier series.
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15.8 The Fourier Integral :

Many practical problems do not involve periodic functions. Then it is desirable to generalize
the method of Fourier series to include nonperiodic functions.

for example,

Consider the function

0 when -T/2<x<-1
fr(x)=11 when -1 < x <1
0 when 1< x< T/2

having period T >2. For T —o we obtain the function

f(x)=lim f;(x)=

T—>w

1 when-1<x<1
0 otherwise

as we can see in Fig. 7.

A (=4

1 1 I_I|2|_0_I|2|_I 1 ™1 1y,
T

RO

. m . [ 1.

RIC R

11
101 > X

Fig. 7

By way of another example,

let f, (x) =€ when -T/2<x< T/2and f;(x+T)= f;(x).

as given in fig. 8.
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Fig. 8

= i = _‘X‘
Then f(x) T“fo‘o fr(x)=€",
These two functions as clearly depicted in Figs. 7 and 8 give us better understanding of the

non-periodic behaviour of the functions in the limit.
This concept of the non-periodicity of the functions will lead to the integral representations

of the Fourier series in the following way.
Now let us start from a periodic function f (X) that has period T and can be represented

by a Fourier series :

© 2nr . 2nrw
f =
(%) a0+n§l(ancos T X+b, sin = xj.

If we use the short notation

and insert a, and b, according to the Euler formulas (16), denoting the variable of integration

by v, we obtain

1 T/2
fr(x)== 1 fr(v)dv
T 112
2 » T2 _ T/2 )
+ = Z{coswnx [ fr(v)cosw,v dv+snwx | fT(v)sna)nvdv}
T n1 T/2 /2

Now,



IACHARYA NAGARJUNA UNIVERSITY 27 CENTRE FOR DISTANCE EDUCATION

Pher =W = T T
and we set
2r
AW=W,  , —W =—
n+1 n T
2 : : .
Then — = o and we may write that Fourier series in the form
17T/2
fr(x)== [ fr(v)av
T 12
1 « T/2 ) T/2 )
+= [cos(wnx)Aw [ fr(v)cosw,vdv +sin(w,x)Aw [ f;(v)sinw,vd v} (35)
7T n=1 -T/2 -T/2

This representation is valid for any fixed T , arbitrarily large, but finite.

We now let T approach infiinity and assume that the resulting nonperiodic function

f(x)=1im f;(x)

To>w

is absolutely integrable on the x- axis, that is, the integral

JLEN L — (36)

1
exists. Then ?—>0 and the value of the first term on the right side of (35) approaches zero.

2r
Furhtermore, AW = ?—>0 and it seems plausible that the infinite series in (36) becomes an

integral from 0 to oo, which represents f (X) namely,

f (x):%ﬂcoswx Oj; f (v)coswv dv + sinvvxoj; f(v)sinwv dv} dw ____. (37)

If we introduce the short notations

A(W)= T f(v)coswv dv, B(w)= T f(v)snwvdv . (38)

— o0 — 00
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this may be written in the form

f(x):%I[A(W)cosva B(w)sinwx] dw (39)

which is a representation of  f (X) by a so-called Fourier integral. This approach merely

suggests the representation (39) but by no means establishes it. Sufficient conditions for the validity
of (39) are as follows.

"f f (X) is pieceiwise continuous in every finite interval and has a right-and left-hand
derivative at every point and the integral (36) exists, then f (X) can be represented by a Fourier
integral. At a point where f (X) is discontinuous the value of the Fourier integral equals the average

of the left - and right - hand limits of f (X) at that point.”

If f(x) is an even function then B(@)=0in (38) and

A(w) = ZOJO f(v)cosovdv .. (40)
0

. (39) reduces to the simpler form

f (x):%IA(w) cosmXx dx (feven) ... (41)

If f(x) isodd, then A(®)=0 and

B(a))=2zf(v)sin(a)v)dv ......... (42)
and (39) becomes
f(x):%ZB(a})sina)x do (f odd) oeeeo- (43)
If complex form of Fourier integral is required, write the compact form of (37) as

f(x)le{T f(v)cos[a)(x—v)dv]}da)

7T 0 |-
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io(x-Vv)

o | o —io(x-V)
zlj{j fv) &2 dv}dw

T 0 |-o

TO |-

o io(x=Vv) w | © —io(x-V)
{j f(v) S . dv}dmlj{j f(v).2 > dv}da)

zzi i e“”x(of f(v). e‘i‘”vdvjda)

(after changing @ to —® in the second term)

or

which is called

‘complex form of Fourier integral’
or

'Fourier integral pair’
or

'Fourier transform pair’
Example - 9 : Find the Fourier integral representation of the function (Fig. 9)

1 when |x|<1
f(x)= (single pulse)

0 when |x>1
Solution : From (38) we obtain

: 1 .
A(w) = | f(v)coswvdv = } coswv dv = snwv _ 2sinw
o - W |-1 w
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1
B(w) = [sinwvdv =0,
-1
and (39) becomes

_ 2% CcosSwWX Sinw

f(X)=—[————— W .
(X)=—]=—" (45)
f(x
NE
» X
-101
Fig. 9
. - _ (+0 1
The average of the left- and right-hand limits of f (X) at x=1isequalto , thatis =

5
Hence, from (45), we obtain the desired answer.

% when 0§X<:L
TcosvvxsdeW: T when x=1
0 W 4

0

when x>1

we mention that this integral is called Dirichlet's discontinuous factor. Let us consider the
case x=0, which is of particular interest. When x=0, then

as Zz—> o (zreal)
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Example - (9) : Find the Fourier integral of
f(x) =€ when x>0 and f(-x)= f(X) (k>0)

Solution : (cf. Fig. 8 where k=1). Since f is even, we have from (40)
A(w) = 2[ e coswv dv
0

Now, by integration by parts,

k —Kkv

e coswvdv=———_¢
J k2 +wW?

W
(—?smwv + CO0S WV).
K

when v=0, the expression on the right equals (k2)+wz ; when v approaches infinity, it

approaches zero because of the exponential factor. Thus

2k
A(w) = Kl [ or one can get this as L(coswV).]

and by substituting this in (41) we obtain the representation

_ 2k ® coswx
f(x):e kx :7£k2+W2 dW (X>0, k>0)
® COSWX T
or £k2+W2dW=Ee (X>0,k>0) ______ s)

Similarly, from the Fourier integral (43) of the odd function
f(x)e™ when x>0and f(-x)=—f(x) (k>0).
we obtain the result

© \WSiNn WX

T
{,mdwzgekx (x>0, k>0)  --eemmeeee (49)

The equation (48) and (49) are the so called Laplace integrals.
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15.9 Orthogonal Functions and generalized Fourier Series :

Let g,,(x) and g,(X) be two real functions which are defined on an interval a < x< b

and are such that the integral of the product gm(x), gn(x) over that interval exists. We shall

denote this integral by (gm, O, ) and it is called as scalar or inner product of two functions g, 9, .
Thus

b

(OmeGn) =T G (X) 9y (X)X —meee (50)

a

The functions are said to be orthogonal on the interval a < X < b if the integral (49) is
zero, that is,

b

(9m 9n) = [9n(X) Gr (X)X = 0 (M#n) —eeeee (51)

a

The non-negative square root of (g,,,d,) is called the norm of g,,(x) and is generally

denoted by ||g,,||; thus

Jom] = (@n: 00) = 163 ()8 - (52

Clearly, an orthogonal set g;,9,,...... onaninterval @ < X < b whose functions have norm
1 satisfies the relations.

a

b 0 when m#n m=12,....,
, = d =
(9m 9n) =[G (X) 8, (X) {1 when m=n n=12,....,

such a set is called an orthonormal set of functions on the interval a <X < b.

Obviously, from an orthogonal set we may obtain an orthonormal set by dividing each function
by its norm on the interval under consideration,

As an example, the functions gm(x) =sinmx, m=12,....form an orthogonal set on the

interval —7 < X< 7, because

(gm,gn)z}rsinmxsinnxdx=0 () — (54)

-
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The norm |g,,[ equals /7 , because

Jonff = T sin® mc dx = = (m=12,...)

Hence the corresponding orthonormal set consists of the functions

sinXx sin2x sin3x

Another familiar orthogonal set is Legendre functions over the interval (—ZL 1) .

Some important sets of real functions g,, g,,..... occuring in applications are not orthogonal

but have the property that for some functions p(X),

v —T

P(X) g (X) 9, (X)dx =0 when M#N  —ooeeeeeee (55).

such a set is then said to be orthogonal with respect tot he weight function p(X) on the

interval a< X <b. The norm of g,, is now defined as

N N T — 59

and if the norm of each function g,, is 1, the set is said to be orthonormal on that interval

with respect to p(x).

If we set hn=\/5 0,,, then (55) becomes

[ (x), (x)dx =0 (men).

a

that is, the functions m form an orthogonal set in the usual sense. Bessel, Laguerre,

Hermite etc... functions belong to such set of orthogonal functions with respect to weight functions
in an interval.

Looking at the derivation of the Euler formulas (9) for the Fourier coefficients, we see that
we used merely the fact that the set of functions sin x or COSX is orthogonal on an interval of length

27 . This simple observation suggests the attempt to represent given functions f (X) in terms of
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any other orthogonal set g;(X), d,(X),.... in the form

o0

f (x)=n§10n 90 (X) = ¢ G (X)+C, Gy (X)+ve e (57)
and determine the coeffocients ¢, C,,...... If the series (57) converges and represents f (X) itis

called a generalized Fourier series of f (X) , and its coefficients are called the Fourier constants of

f (X) with respect to that orthogonal set of functions.

To determine these constants, we multiply both sides of (57) by gm(x) and integrate over

theinterval a < X < b on which the functions are orthogonal; assuming that term-by-term integration
is permissible, we obtain

b 0 b
[fg,dx=Xc,]0,0, dx
a n=1 a

The integral for which n=m is equal to the square of the norm | g,,|, while all the other
integrals are zero because the functions are orthogonal. Thus,

b
o T — (58)

and the desired formula for the Fourier constants is

1 b
Cn =”g P I (X)gn(X)dx ___ (5q)

15.10 Summary of the Lesson :

Starting with periodic functions, trigonometric Fourier series is developed and defined with
Dirichlet's conditions. It is mathematically and graphically explained how far the partial sums and
sum of the series converge to the actual value of the function. For even and odd periodic functions,
compactness in the Fourier series is shown. Euler formulae for Fourier coefficients for the Fourier
expansion of a periodic function with an arbitrary period have been derived. Half-range Fourier
expansions are treated separately. Alternative forms of Fourier series are given. The Fourier integral
as a limit of the sum of Fourier series is derived for non-periodic functions. Ultimately, this leads to
the concept of Fourier transforms. Need based worked out examples are given. Finally the
generalized Fourier series is defined with a stress on the basic concepts of orthogonal functions.
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15.11 Key Terminology :

Periodic functions - Fourier series - Euler coefficients - Fourier series for arbitrary period -

Half range expansions - Periodic extension - Phase angles - complex exponential series - Fourier
integral - Dirichlet's discontinuous factor - Sine integral - Laplace integrals - Orthogonal functions -
generalized Fourier series.

15.12 Self Assessment Questions :

1.

Find the Fourier series for the periodic function f (x) given by

- —-r<X<0
f(X)z T T }
X O<x<rm
Hence rovethatﬂ—2—1+i+i+
P g © ¥ 5

(Hint : Sum the series at the discontinuity x=0)

Obtain the half-range sine and cosine expansion of

2

f(t):t O<t<1

2-t  1I<t<?
| . f(t)—t O<t<«1
Given the function ) 1<t<?2

nr
what is the amplitude of the resultant term of frequency ? where p is half the period of

nrt
f (t) in its Fourier series. What is the phase of each of these terms relative to COST and

_ _nat
relative to SIN _p

T /4
Find the complex form of the Fourier series of the periodic function f (t)zcost _E<t <E

€
(Hint : Use the formula c0s = ———)
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5. Using Fourier integral representation, prove that
© COSUX T
[—S— du =—¢e* x>0
ou +1 2

6. Find the Fourier integral representation of the functions

X

0
f(x):% x=0
-

verify the representation directly at the point x=0

15.13 Reference Books :
1. E. Kreyszig "Advanced Engineering Mathematics" Wiley Eastern Pvt., Ltd., 1971
2. C.R. Wylie Jr., "Advanced Engineering Mathematics" Wiley international Edition.
3. B.D. Gupta "Mathematical Physics" Vikas Publishing House, 1980.
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Unit - IV

Lesson - 16

FOURIER TRANSFORMS

Objective of the lesson :

* To define infinite Fourier transform pair

* To know the relationship between Fourier and Laplace transforms

* To provide examples for better concepts

* To give the definition of finite Fourier cosine and sine transforms

* To apply the transforms for the solution of partial differential equations.

Structure of the lesson :

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13
16.14
16.15

16.16

Introduction

Nomenclature and definition of Fourier transforms
Relationship between Fourier transform and Laplace transform
Linearity property

Scaling property

Time shifting property

Frequency shifting property

Time derivative property

Frequency derivative property

Integration property

Time convolution property

Frequency convolution property

Parseval's theorem

Fourier transform of Dirac delta function

Examples

Finite Fourier sine transform of F(X)
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16.17 Finite Fourier cosine transform of F (x)

16.18 Some operational properties of finite sine and cosine transforms
16.19 Summary of the lesson

16.20 Key Terminology

16.21 Self Assessment Questions

16.22 Reference Books

16.1 Introduction

In the last lesson, Fourier series expansions have been extensively studied which are
appropriate for the analysis of periodic functions. Fourier transforms also perform a similar role in
the analysis of functions which are not necessarily periodic. To be more elaborate, Fourier series
allows a periodic functions to be represented as an infinite sum of harmonic oscillations at definite
frequencies equal to multiples of the fundamental whereas the Fourier transform allows aperiodic
function to be expressed as an integral sum over a continuous range of frequencies. With a suitable
use of Dirac delta functions, the Fourier transform may be used to cover both periodic and aperiodic
functions. The Fourier series then comes to be regarded as a special case of the Fourier transform.

Fourier transform are already introduced in the last lesson by way of Fourier integrals. In
this lesson, importance has been given to Fourier transform (infinite), their properties and the
examples and subsequently to finite Fourier transforms.

16.2 Nomenclature and definition of Fourier transforms :

There is no universally accepted convention governing the definitions of the terms 'Fourier
transform’' and ‘inverse transform'. We shall adopt the notation below using t and @ as the
variables.
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= inverse Fourier transform of f (o)

=T ()

Equations (1) and (2) together, will be called as 'Fourier Transform Pair’

'Fourier transforms' means 'infinite Fourier transforms', also called as ‘complex Fourier
transforms' .

1
For the sake of symmetry, the definition can also be choosen incorporating a factor E
in both transform (1) and inverse transform (2).

Symmetry can also be achieved by substituting o =2zv

Different kind of definition arises due to some authors by taking the Fourier transform with
a positive exponent while the inverse transform has a negative exponent.

we also define 'Fourier sine transform' or 'infinite sine transform' of F (t) as

fs(0) = | F(t)sinat d
0

Ts{F (t)} = Fourier sine transform of F (t)

0

2 :
and F(t):;g) fs(o)snot do 4)

:Ts_l{ fs (a))}

= Inverse Fourier sine transform of fs(w)

Similarly, the Fourier cosine transforms or infinite Fourier cosine transform of F (t) can be
defined as

fC(co)zojoF(t)cosa)t dt
0

T¢ {F (t)} = Fourier cosine transform of F(t)
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o0

2
and F (t) = ;é fe (Co) cosotdo (6)

= TC_1 { fo (a))}

= Inverse Fourier cosine transform of f.(®).

/ 2
Here also, for the sake of symmetry some authors may take ,/— as the factors for (3) and
T

(4); and for (5) and (6).

Throughout this lesson, we confine to the definition (1) to (6). Capital letters for the functions
in transforms and lower case letters for inverse transforms will be used.

Itis a cautionary note that one should invariably give the type of definition of transform pair
that he is following before attempting any problem on Fourier transforms.

16.3 Relationship between Fourier transform and

Laplace transform :

If we define the function F(t) as

oy

then the Fourier transform of F (t) is

T{F()} = ] ™M F(t) o

—0o0

o . o
= [ eModt + JeM e M G(t)dt
—00 0

—Te WGty at
0
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T s
= (I)e G(t)dt where s=x+iy

-L{o()

which shows the relationship between Fourier and Laplace transforms.

16.4 Linearity Property :

If C; and C, are arbitrary constants, then
T{CLF (t)+C2G(1)} = CiT {F (1)} +CoT{G(t)}
Proof : T{C F(t)+CyG(t)}

=] et [CLF (1)+CG(t)] dt

—00

=G, [ Ft)e ™t +C; | G(t)e ot

— o0

=G T{F (1)}+CoT{G(t)}
16.5 Scaling Property (Similarity Theorem) :

1 10)
If f (@) is the Fourier transform of F (t), then 2 f Y is the Fourier transform of F (at).

Proof : We know that the definition

T{F(1)} = T it F(t)dt

L T{F(at)} = Te‘i“’t F(at)dt

—00
.
© -1 -X dx dx

T{F(at)j=[e 2 F(x); Put at=x = dt="=
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i)
=—Tf| =1 by definition.
a a

Note : Corresponding results hold good for sine and cosine transforms.

16.6 Time Shifting Proeprty :

If {F (t)}=f (@), then T{F(t-a)}=e"% (o)

Proof : T{F(t-a)} = Of e F(t-a)dt

—0o0

© _jo(x+a
=]e ( )F(X)dX Putt—a=x = dt=dx

—ga Of e 1% F (x)dx

—e7% f (@)

16.7 Frequency Shifting Property :

i T{F(t)}=f (o), then T{eiwot F(t)} S (o) R — 0
Proof : T{eiwot F (t)} = _T gt doot | (t) dt

= T el@e0)t E () ot

=f(w-awp)

The result (i) of the theorem states that a shift of wg in the frequency domain is equivalent

to multiplication by eiwot in the time domain. Or, the multiplication by a factor eiwot translates the
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whole frequency spectrum f (co) by an amount wgq. Hence this tehorem is also known as the
frequency - translation theorem.

In communication systems, this frequency translation is accomplished by multiplying a

signal F (t) by a sinusoidal signal, the process being known as modulation. Since a sinusoidal

signal of frequency g can be expressed as the sum of exponentials, we have

F (t)cosapt =%[F (t)e“ot +F (t)e—ia)ot}

Then using frequency - shifting property (i),

We have

'T{F(Qcoswot}:-%[f(ar+wo)+f(ay_w0X] __________ i
Similarly,
T{F(t)gnwot}=i§[f(w+wo)+f(a)—a)o):| ____________ (i)

Thus the process of modulation translates the frequency spectrum by the amount of @ .
This result is also known as 'modulation theorem'.

16.8 Time derivative property :

If T{F(t)}=f (), then T{F(n) (t)} =(iw)" f (w) provided F(t) and its derivatives of
all orders tend to zeroas t —>+o0.
Proof : We have T{F(t)} = f (o)

STIF(@O) = [ e R ()t

—00

=g ot F(t)‘Oo + of i F(t) et gt

=io f(w) since F(t) vanishes as t—>+o
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16.9 Frequency derivative property :

i (@)=T{F(0) then 10V (w) =T (-it)" F (1)

Proof : Given that f (a)):T{F (t)}

df (a)) d —iot
= F(t)dt
So dw dw {Oe ( )
< d —j ot
= | — F(t)dt
30 € (t)

§—8

(<o) F'(t)e " dt

as F'(t)=0 at t=too



IACHARYA NAGARJUNA UNIVERSITY 9 CENTRE FOR DISTANCE EDUCATION

_ %ie““’t (~it)F (t) dt

= T (cit)? et E (bt
—T{(-0°F ()]

L 1= {(—it)n F (t)} _

16.10 Integration Property :

I T{F(t)}=f (o), thenT{_iF(ﬂ)dﬂ}=%f(w).
Proof : Let G(t)= [ F(4)dz ~G(1)=F (1)

—o0
So T{G(t)} =iw g(w) by time derivative property.

1 1 1

or g(e)=—T{G ()} ==T{F(t)} == f (o)

i iw iw

16.11 Time Convolution Property :

Given two functions Fy(t) and F;(t), the formation of the integral
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is called the convolution integral of the two functions Fl(t) and F (t)

Time convolution property says that

TR R (1)) = fi(0) f2(0)

Proof : T{Fl(t)* Fz(t)}

_ e—ia’t[of FL(A)F, (t—ﬂ)dﬂ)dt
= | Fl(z)(of e it F2(t—l)dt)dl

= of Fl(l)(_? g lo(4+x) ':Z(X)ded)b by putting t—2A =X

—00

:( T el F(2)da j (ie‘iwx Fz(x)dxj

—0o0

= fi(o) f2(w)

16.12 Frequency convolution property :

FT{F ()} = f (@), then T{R(t) F2(t)} = % f(w) f(e)

1 *
Proof : o fi(w) fo(w)

1 e e}
:E ] fl(l) fz(a)—l)dl (by convolution definition)
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=— | fl(”[ ] g i) ) (t)dtJdA (by transform definition)

o0 .
—ioot
= [ eV R () Fy(t) dt (by inverse transform definition)

—00

=T{FL(t) Fa(t)}
16.13 Parseval's Theorem :

(T{F ()} = (). then | |f (o) do =2 ] [F (1)t

OR

The squared modulus of a function and the squared modulus of its transform have

[ee] 2 +00 2
proportional areas. In particular, if @ is replaced by 27, then J. |F (U)| dv = J. |F (t)| dt .

—00

Practically speaking, if each integral represents the energy associated with some process,
the theorem says that the computation may be made in either the domain of the function or the
domain of its transform.

Proof : We have the definition as
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Let F(t)and G(t) are two functions (may be complex) whose Fourier transforms are
f(w) and g(®), then

*

T f(0)d (0)do= | f(a))[? G(t)eit dtj do

Il
g —38

G (t)[i f () da))dt

,f G (t) 2 F (t)dt from the inverse transform

27 [ F(t)G' (t)ct

—00

In particular, if F(t)=G(t), then

© 2 © 2
| |f(a))| do =27 | |F(t)| dt
—0 —Q0

which is the required Parseval's theorem.

16.14 Fourier transform of Dirac delta Function :
We know one of the properties of Dirac delta functions 5(t—a) as
e}
[ F(t)s(t-a)dt = F(a)
—0
Now the Fourier transform of & (t—a) is
T et
T{5(t-a)} = | €' 5(t—a)dt
—00
_gioa (delta function property)

In particular, if a=0, then

T{5(t)}=1
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16.15 Examples :

1 t|<a
(1) Find the Fourier transform of F (t) defined by F (t):o |t|>a} and hence evaluate
% sinwa coswt ©“snw
M | — ——do, iy |= —do
—o0 @ 0o @

Solution : As per the definition of transform,
(e 0] .
T{F(t)}= ] e F(t)dt = f (o)
—00

—a ot a it . t
=[0e'dt+ [1e'dt+ [e'.0dt
—00 —a a

—j ot a
e | . 1 [—ia)a_eia)a}

a ot
=[e'dt =" =——|¢e
—iw |_a “iw

QD

- 1 % _igt2.Snwa
(=T f _ 17 giet2.8n0a
(=T ()] zﬂ_ie % do
e O
* snwa . P tl<a
(i.e)) _{o o (COSa)t+IS|na)t)da): 0 H>a}
: _ t
? N8 coswt do+ i Of MNRBGnpt do = tI<a
- @ - O 0 [t>a

Equating real parts on both sides
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® gin Vs tl<a
| N8 st do = t<al 0]
e @ 0 t|>a
If t=0 and a=1, in the above integral
© snw
] wa =7 s—a<t<a becomes —1<t<1 in which t=0 lies.
—0
“snw T
T T do== .
or g) o 2 (i)
2 “tcost—sint t
(2) Find the Fourier transform of F (t) = 1-t It||<1 and hence evaluate | t—3 COSE dt
0 t|>1 0

Solution : The Fourier transform of F (t) is given by

Now the given problem becomes

. 1 . o .
f(w)=] 0edt+ j(l—tz)e_"‘)tdt Ljoeet gt
—o0 -1 1

- }(1—t2)e_i“’t dt

-1
—ia)tl 1 ot
—(1-12)& 18 (—2t)d
( t )—wo ., _jl(—ia))( )t
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. 1 .
: —lot 1 o lot
:O+a {t.e_ } | © 1t

w ) 2 o

o | —lw iw i

_gi e—ia) B e+ia) N 1 l:e—ia)t :ll
-1

__ 4 CoSm + 4 sSnw
602 603

:wis(sina)—a) cosw) = T{F(t)}

(sinw-ocose)e®! do

or ?.—S(COSa)tnLiSina)t)da):F(t)

Equating real parts on both sides

. i

— (1=t ) t|<1
[ SNOZOSO og ey = ZF ()= d )<
- 2 o t)>1

1
Putting t=§ which lies in the interval (-11),

© g9nw—w CoSw w 3r
=5 cos_ do ="+
—00 (0] 2

we get
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© g5Nnw—w CoSw w 3r
2[ —————cos— do = —

0 w3 2 8
©gNnw—oCcosw W 3
0 ® 2 16

2
(3) Obtain the Fourier transform of g (t)ze_té (Gaussian)

Solution : As per the definition,

f(0)=T{F(t)! = ] etot e_t% dt

—(t2+2ia>t) (t+ia))2 2
=]e 2 dt=[e 2 e?2 d
w? —(t+iw)2 .
o0 t+lw
—e 2 2 =X = dt=+2dx
=e [ e dt Put 7

2

o o
—2f2e2 [eXdk=2/2 ¢ 2.5

00

a)2 _wz
:Zﬁg e / =2z e 4 (Gaussian)

Note : This problem can also be asked as "show that the Fourier transform of a Gaussian function is
again a Gausian function".
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(4) Find the complex Fourier transform of e—\t\

Solution : f(a))=T{F(t)} = Of gt e_‘t‘ dt

_ et g, el g
0

0
1 1 .
1o ltie using L {1}
2
1+a)2
(5) Find the inverse Fourier transform of f (a,):e_‘a’\k where k belongs to (_OO’OO).
g (o) ©<0
Solution : Giventhat f(®)= ’
e_(+w) w=>0
. —1 _ _ 1 o Ia)t
ST (@) =F(t)=o- [ € f(0)do
2r
1 ? CDk 1% o —ok
=—Ie do +—[e” e do
77'- —00 T 0
_ ije‘(k”t)“’ da)_’_ije—(k—it)w do
2w

0 T o

1] 1 1
=Tt
2ﬂ{k+lt k—J
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1%k 1k
21 k2+t2 7w K2 +t?

(6) Find the sine and cosine transform of F (t)=2e_5t +5¢ 2

Solution : According to the definitions of cosine and sine transforms, we have

| (Ze_5t +5e_2t)coswt dt
0

—h
o
—_
e
~
I
s
——
T
—~~
—
~
—_—
Il

o0

and fs(@) =TS{F('[)}=I(26—5t+5€_2t)sina)t dt
0

Equation (i) and (ii) are respectively the real and imaginary parts of the integral

0

[ (2e‘5t +56 2 )eia’t it
0
Now I(Ze 2 1 5e Zt)em)t dt = I[Ze_(s_'w)t +5e(2-io)t }dt
0 0
_ 2 N 5
" 5oim 2—iw from L{1}

2(5+ia)) 5(2+ia)) 1 1 1 2w 50
=3 + 5 =10 5 + 5 +1 5 + >
o +25 o“+4 0°+25 ow°+4 o“+25 w°+4

of(Ze“"_’t+5e_2t)coscotdt—f(co)—lO t 2
Thus 0 ¢ a)2+25 a)2+4

o0
and j(ze—5t+5e—2t)sina)tdt=fs(w)= 22” + 25“’
0 0°+25 s°+4
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(7) Solve for F (t) the integral equation

" 1 0<w<1
[F(t)sinotdt =2 1<w<?2
0 0 w>2
Solution : The LHS integral of the problem is the sine transform of F(t) Le., fs(a)) .
1 0<w<1
So fs(w) = 2 lco<2 is given
0 w>2

we have to find the inverse of fg(w) as F(t)

_ 2% )
so F(t)=Ts 1[fs(a))] = ;(j) fs(w)snot do ______ @)
1 2
_2]1sinetdo + 2] 2snat do
To T1
:g{_ coswt}1 . ﬂ{—coswt}2
7 t w=0 7 t w=1
2 4
=— (cost-1)——(cos2t — cost
nt(cos ) m(cos cost )

:3(1+ cost —2cos2t)
mt

42
(8) Find the Fourier cosine transform of € t (Gaussian)

Solution : According to the definition

fo (@) =Te {F (1)} = | F(t)cosott
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o0 —t2
:(j)e coswtdt =1 (say)

di

® {2 . 1 2 .
——=—[te" snetdt=+=[-2te" sinet.dt
do 0 2

0

Integrating by parts, we get

27° © 2
d —1{[sincot.e_t } ~[we™ coset dt}

do 2

0 o
© 2
= 21" coswtdt = -2
20
d 1
—=——0 do
or I >
2
. ®
Integrating, logl = 7 + logk

2
_a)/
or | =ke /4

o0 2 0 2 \/_
—t _t V4
when o =0, then | = I e cosO dt = J e dt =——
0 0
- ﬂ =kl or kzﬁ
2 2
2
_w
so | 2% e A (Gaussian)

(i.e.) The result is similar to the Example (3).
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16.16 Finite Fourier Sine transform of F(x) :

The finite Fourier sine transform of F(X) 0<0x<c is defined by

Where n is a positive integer.

Then the inverse finite Fourier sine transform of fg(n) (i.e.) F(X) is given by

— 22 . nTX
Tg 1{fs(n)}:F(x)zgrElfs(n)sn% ________ ®)

For example, if we consider F (x)=1 in the interval 0<x<z , then

fs(n) =j1.sin@ dx from (7)
0 T
T 1-(-9)"
:(j)smnxdx= — (n=12,....)

If f5(n)forall n is substituted in (8) and sum the series we are supposed to get F(X) as
1. (i.e.) There is only one function with a given transform or the inverse transform is unique.

Considering another example F (X)=x(0<x<r), we have

n+1
T (=

fs(n)=[ xsinnxdx = % (n=12....). To find the inverse of this, substitute fg(n) with
0

various values of n in equation (8) and that series should give us the value of F (X) to be x.

16.17 Finite Fourier Cousine Transform of F(X) :

The finite Fourier cosine transform of F (X) in the interval O< x<c is defined by
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where n is a positive integer.

Then the inverse finite Fourier cosine transform of f;(n) (i.e.) F(X) is given by

Both the formulae (8) and (10) can easily be understood from the Fourier series.

considering an example F (X)zl in the interval O< X<z . We can have

T V4
fc(n)=ICOS%dX = [ cos nmx dx
0 T 0

_snnzx|”
o

=0 for n=1,2, ...

0
But f.(0)=7. Sofinally f(n):ﬁ n=0

>
|
‘l—\
N
N —

After substituting this in (10), it is obvious that

F(X):;ﬁ =1

Note : It is to be observed that through the functions F (X) are simple, their finite Fourier sine or
cosine transforms involve complexities.

16.18 Some operational properties of finite sine and
cosine transforms :

() Sine transform of F'(X) in O<x<c is given by

T (%)) = zF’(x) sin"™ax

C ¢
_F(an™  Jr ()X g,
Cl o c ¢
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=0-"2 15 () = T {F ()] e (1)

X
(i) if F (X):(I) H (l)dl , then the above property (i) takes the form as

nr_. | X
T {H()} =T {(I)H (/l)dfl} ---------- (12)
14 ¢ " - n7TX
(i)  Sine transform of F"(Xx) 0<X<c is given by Ts{F (X)}Zcf)F (X)S'n—c dx
C ¢
=F(x)sin™| —]F'(x)oos 1 dx
Clo o cC C

nr ¢ %2%
=—— [ F'(x) cos—=dx

e | nex© ¢ . NTX N
=——| F(x)cos—| +]F(x)sin——adx

¢ Cl o C

fs(n)==—%—>- (n=12,....

n-r

determine F (X) in the interval of 0<x<z

Solution : We know the inverse sine transform as
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_2 & 1-cosnt

T n=1 n27r2

1-cosnrt
2

200
=—32

7o n=1 n

sinnx

which is the required result.

2 2
8F8FO

(10) Determine the function F (X, y) such that Py +_8y2 = 0<Xx<7

with the boundary condition

F =0when x=0,

0 when y=0

Fo(constant) when y=7

Solution : Since the interval is finite, let us use finite Fourier sine transform on both sides of the
differential equation. Then

According to equation (13), in the interval 0<x<7 To{Fex} = —n? fs(n)+n[0-0]

using boundary conditions =—n? fs(n)

2
2 TOF .
. 14 becomes —N fs(n)+£_2 sinnxdx=0

2 [n
or %[(I)F(x,y)sinnx dx}znzfs(n)
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0*fs(n)
ayz

Its general solution is

(i.e) =n” fg(n)

fs(n)=Asinh(ny) --------

At y=r, fs(n)=]F(xy)sinnx dx

o —9

T
= [ Fgsinnxdx
0

—cosnx |*

=F
0 n 0

=0 when n is even

2k, _
:_T when n is odd.

So, when n is odd, at Y=, (15) becomes

_%h

= Asinh(nr)
n
. (15) takes the form

2Ry sin h(ny)

fs(n):

n sinh(nr)

when n is odd.

Hence the inversion formula (8) will give on replacing n by 2m+1.

4F, ®
F(xy)=-—2

1 sinh(2m+1)y

7 m=02M+1sinhz(2m+1)

which is the required result.

sin(2m+1)x
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2

ou o°u iy
(11) Solve —=—> with the boundary conditions.
ot ox

U (0,t)=0, U (7,t)=0, U (x,0)=2x when O<x<z, t>0.

Give physical interpretation of the problem.

Solution : Taking the finite Fourier sine transform on both sides of the differential equation,

i , Tt
We have (I)Ut (xt)sinnxdx = ([)U sinnxdx __________. (16)

Applying equation (13) for the interval (O,ﬂ) to the RHS of (16), we get

Tou(xt) . T .
LHS = | ( )sm xdx = E[ju (x,t)sin xdx}

o ot ot| o

=n? us(n,t) (from RHS using the boundary condition)
0
or S Us(nt) = n®ug(n,t)
Integrating w.r.t. t, we have
us(n,t) = Ae_n2t ------ a7 Where the constant A is to be determined

T . 2t

or [U(x,0)sinnxdx=Ae "

0
T . 0
At t=0, JU (x0)sinnxdx =Ae
0
using the boundary condition that U (X, O):2x

v
we have | 2xsinnxdx = A
0
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T
2X(—COSHX) +” CoSNX

or A= . | 2dx
x=0 O
T
=——=C0oSsnr
-2 2 _n2
(17) becomes us(n,t)=T =— Tﬂcosnne nt

Applying the invension formula for finite Fourier sine transform, we have

2 n%t )

U(xt)==3 (—ECOSI‘W g " tjsmnx
T n=1 n

For physical interpretation, U (x,t) may be regarded as representing temperature of a

solid at any point X at an instant of time t in a solid bounded by the planes x=0 and X=7x. The

boundary conditions U (O,t)=0 and U (n,t):O give the zero temperature at the end points of the

solid. U (X, O):ZX represents the initial temperature which is again a function of x.

16.19 Summary of the Lesson :

Definitions of infinite Fourier transforms with different nomenuclatures are given, several
properties have been explained with sufficient details whenever needed. Convolution integral over

a different integral (—ootOOO) is defined and accordingly convolution theorem is proved several

examples on inifinite Fourier transfers, inifinite Fourier cosine and sine transforms are worked.
While dealing with infinite Fourier cosine and sine transforms, generally it is convinient to make use
of the concepts of Laplace transforms.

Definition of finite Fourier cosine and sine trasnsforms and their inverses are introduced.
Some of the operational properties are given. It is seen that even for much simpler functions, the
finite Fourier cosine and sine transforms are unwieldy and in many instances. The inverse is given
in terms of series. Many of the partial differential equations with boundary value problems are
solved using the finite transform.

16.20 Key Terminology :

Transform pair - modulation theorem - convolution integral - Parseval's theorem - Dirac
Delta functions - Gaussian functions - Finite transforms - Operational Properties.
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16.21 Self Assessment Questions :

1.  Find the complex Fourier transform of F (x):e_a‘ X where a>0 and x belongs to (—c0,0).

d?X  0<x<b
2. Obtain the infinite Fourier transform of F (X):
0 x>0
J2r —C<X<cC

3. Find the Fourier transform of the step function F(X): 2 } Interpret the

IX|>c

result. When c is zero.

(e 6]
— 1
4. Solvetheintegralequation | f(X)cosAixdx=e
0

—aX

e
5. Find the sine transform of ——
X

6. Find the cosine transform of N g-a
7. Obtain the finite Fourier sine and cosine transforms of F (x):x2 on (O, C).

‘ _1-cosnz
8. Ifthe finite Fourier sine transform of F (X) is s(n)= 12 72 determine F(X) is O<x<z

9. Solve the Laplace equation of F (X, y) over the interval (0,7 ) with the boundary conditions

F(0,y)=F(7,y)=0;F(x,0)=0 and F(x,7)=k (constant).

02U X, t
10. Find the finite Fourier sine and cosine transforms of # for O<x<c and t>0.
X
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